Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,390 Bytes
f2a451c cdba24f f2a451c cdba24f f2a451c cdba24f f2a451c cdba24f f2a451c cdba24f f2a451c cdba24f f2a451c cdba24f f2a451c cdba24f f2a451c cdba24f f2a451c cdba24f f2a451c cdba24f f2a451c cdba24f f2a451c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import gradio as gr
import numpy as np
import random
import spaces
from PIL import Image
# import spaces #[uncomment to use ZeroGPU]
import torch
from transformers import AutoTokenizer, AutoModel
from models.gen_pipeline import NextStepPipeline
from utils.aspect_ratio import center_crop_arr_with_buckets
HF_HUB = "stepfun-ai/NextStep-1-Large"
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(HF_HUB, local_files_only=False, trust_remote_code=True)
model = AutoModel.from_pretrained(HF_HUB, local_files_only=False, trust_remote_code=True)
pipeline = NextStepPipeline(tokenizer=tokenizer, model=model).to(device=device)
MAX_SEED = np.iinfo(np.int16).max
MAX_IMAGE_SIZE = 512
DEFAULT_POSITIVE_PROMPT = None
DEFAULT_NEGATIVE_PROMPT = "copy the original image"
@spaces.GPU(duration=300)
def infer(
prompt=None,
ref=None,
seed=0,
text_cfg=7.5,
img_cfg=1.0,
num_inference_steps=30,
positive_prompt=DEFAULT_POSITIVE_PROMPT,
negative_prompt=DEFAULT_NEGATIVE_PROMPT,
progress=gr.Progress(track_tqdm=True),
):
#if ref is None:
# gr.Warning("⚠️ Please upload an image!")
# return None
if prompt in [None, ""]:
gr.Warning("⚠️ Please enter a prompt!")
return None
if ref is not None:
editing_caption = "<image>" + prompt
input_image = ref
input_image = center_crop_arr_with_buckets(input_image, buckets=[512])
else:
editing_caption = prompt
input_image = None
img_cfg = 1.0
image = pipeline.generate_image(
captions=editing_caption,
num_images_per_caption=1,
positive_prompt=positive_prompt,
negative_prompt=negative_prompt,
hw=(input_image.size[1], input_image.size[0]),
cfg=text_cfg,
cfg_img=img_cfg,
cfg_schedule="constant",
use_norm=True,
num_sampling_steps=num_inference_steps,
seed=seed,
progress=True,
)
return image[0]
css = """
#col-container {
margin: 0 auto;
max-width: 800px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # NextStep-1-Large-Edit")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
with gr.Row():
#ref = gr.Image(label="Reference Image", show_label=True, type="pil", height=400)
with gr.Accordion("Advanced Settings", open=True):
positive_prompt = gr.Text(
label="Positive Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your positive prompt",
container=False,
)
negative_prompt = gr.Text(
label="Negative Prompt",
show_label=False,
max_lines=2,
placeholder="Enter your negative prompt",
container=False,
)
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
num_inference_steps = gr.Slider(
label="# sampling steps",
minimum=10,
maximum=50,
step=1,
value=30, # Replace with defaults that work for your model
)
with gr.Row():
text_cfg = gr.Slider(
label="Text cfg",
minimum=1.0,
maximum=15.0,
step=0.1,
value=7.5, # Replace with defaults that work for your model
)
img_cfg = gr.Slider(
label="Image cfg",
minimum=1.0,
maximum=15.0,
step=0.1,
value=2.0, # Replace with defaults that work for your model
)
with gr.Row():
result_1 = gr.Image(label="Result 1", show_label=False, container=True, height=400, visible=False)
#result_2 = gr.Image(label="Result 2", show_label=False, container=True, height=400, visible=False)
#gr.Examples(examples=examples, inputs=[prompt, ref])
def show_result():
return gr.update(visible=True), gr.update(visible=True)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
#ref,
seed,
text_cfg,
img_cfg,
num_inference_steps,
positive_prompt,
negative_prompt,
],
outputs=[result_1],
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=show_result,
outputs=[result_1],
)
if __name__ == "__main__":
demo.launch() |