Spaces:
Running
Running
Add application file
Browse files- Dockerfile +13 -0
- __pycache__/app.cpython-310.pyc +0 -0
- app.py +40 -0
- cat_dog_inception_v3.h5 +3 -0
- requirements.txt +4 -0
Dockerfile
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9
|
| 2 |
+
|
| 3 |
+
RUN useradd -m -u 1000 user
|
| 4 |
+
USER user
|
| 5 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 6 |
+
|
| 7 |
+
WORKDIR /app
|
| 8 |
+
|
| 9 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
| 10 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 11 |
+
|
| 12 |
+
COPY --chown=user . /app
|
| 13 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
__pycache__/app.cpython-310.pyc
ADDED
|
Binary file (1.5 kB). View file
|
|
|
app.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, UploadFile, File
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import io
|
| 6 |
+
import requests
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
MODEL_URL = "https://huggingface.co/blaxx14/cat-vs-dog-inceptionv3/resolve/main/cat_dog_inception_v3.h5"
|
| 10 |
+
MODEL_PATH = "cat_dog_inception_v3.h5"
|
| 11 |
+
|
| 12 |
+
app = FastAPI()
|
| 13 |
+
|
| 14 |
+
def download_model():
|
| 15 |
+
if not os.path.exists(MODEL_PATH):
|
| 16 |
+
print("Downloading model...")
|
| 17 |
+
response = requests.get(MODEL_URL)
|
| 18 |
+
with open(MODEL_PATH, "wb") as f:
|
| 19 |
+
f.write(response.content)
|
| 20 |
+
print("Model downloaded!")
|
| 21 |
+
|
| 22 |
+
download_model()
|
| 23 |
+
|
| 24 |
+
print("Loading model...")
|
| 25 |
+
model = tf.keras.models.load_model(MODEL_PATH)
|
| 26 |
+
print("Model loaded!")
|
| 27 |
+
|
| 28 |
+
def preprocess_image(image):
|
| 29 |
+
img = Image.open(io.BytesIO(image)).convert("RGB")
|
| 30 |
+
img = img.resize((150, 150))
|
| 31 |
+
img = np.array(img) / 255.0
|
| 32 |
+
img = np.expand_dims(img, axis=0)
|
| 33 |
+
return img
|
| 34 |
+
|
| 35 |
+
@app.post("/predict/")
|
| 36 |
+
async def predict(file: UploadFile = File(...)):
|
| 37 |
+
image = await file.read()
|
| 38 |
+
processed_img = preprocess_image(image)
|
| 39 |
+
prediction = model.predict(processed_img)
|
| 40 |
+
return {"prediction": prediction.tolist()}
|
cat_dog_inception_v3.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5706614a14c05b6be091aecb989b31cb236bbeece2377bac949da33c37f9157b
|
| 3 |
+
size 505377176
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
pillow
|
| 3 |
+
tensorflow==2.18.0
|
| 4 |
+
uvicorn[standard]
|