import functools import importlib import os import fsspec import numpy as np import torch from dataclasses import dataclass from functools import partial from inspect import isfunction from PIL import Image, ImageDraw, ImageFont from safetensors.torch import load_file from tqdm import tqdm def create_npz_from_sample_folder(sample_dir, num=50_000): """ Builds a single .npz file from a folder of .png samples. """ samples = [] imgs = sorted(os.listdir(sample_dir), key=lambda x: int(x.split(".")[0])) print(len(imgs)) assert len(imgs) >= num for i in tqdm(range(num), desc="Building .npz file from samples"): sample_pil = Image.open(f"{sample_dir}/{imgs[i]}") sample_np = np.asarray(sample_pil).astype(np.uint8) samples.append(sample_np) samples = np.stack(samples) assert samples.shape == (num, samples.shape[1], samples.shape[2], 3) npz_path = f"{sample_dir}.npz" np.savez(npz_path, arr_0=samples) print(f"Saved .npz file to {npz_path} [shape={samples.shape}].") return npz_path def init_from_ckpt(model, checkpoint_dir, ignore_keys=None, verbose=False) -> None: if checkpoint_dir.endswith(".safetensors"): model_state_dict = load_file(checkpoint_dir, device="cpu") else: model_state_dict = torch.load(checkpoint_dir, map_location="cpu") model_new_ckpt = dict() for i in model_state_dict.keys(): model_new_ckpt[i] = model_state_dict[i] keys = list(model_new_ckpt.keys()) for k in keys: if ignore_keys: for ik in ignore_keys: if ik in k: print("Deleting key {} from state_dict.".format(k)) del model_new_ckpt[k] missing, unexpected = model.load_state_dict(model_new_ckpt, strict=False) if verbose: print( f"Restored with {len(missing)} missing and {len(unexpected)} unexpected keys" ) if len(missing) > 0: print(f"Missing Keys: {missing}") if len(unexpected) > 0: print(f"Unexpected Keys: {unexpected}") if verbose: print("") def get_dtype(str_dtype): if str_dtype == "fp16": return torch.float16 elif str_dtype == "bf16": return torch.bfloat16 else: return torch.float32 def disabled_train(self, mode=True): """Overwrite model.train with this function to make sure train/eval mode does not change anymore.""" return self def get_string_from_tuple(s): try: # Check if the string starts and ends with parentheses if s[0] == "(" and s[-1] == ")": # Convert the string to a tuple t = eval(s) # Check if the type of t is tuple if type(t) == tuple: return t[0] else: pass except: pass return s def is_power_of_two(n): """ chat.openai.com/chat Return True if n is a power of 2, otherwise return False. The function is_power_of_two takes an integer n as input and returns True if n is a power of 2, otherwise it returns False. The function works by first checking if n is less than or equal to 0. If n is less than or equal to 0, it can't be a power of 2, so the function returns False. If n is greater than 0, the function checks whether n is a power of 2 by using a bitwise AND operation between n and n-1. If n is a power of 2, then it will have only one bit set to 1 in its binary representation. When we subtract 1 from a power of 2, all the bits to the right of that bit become 1, and the bit itself becomes 0. So, when we perform a bitwise AND between n and n-1, we get 0 if n is a power of 2, and a non-zero value otherwise. Thus, if the result of the bitwise AND operation is 0, then n is a power of 2 and the function returns True. Otherwise, the function returns False. """ if n <= 0: return False return (n & (n - 1)) == 0 def autocast(f, enabled=True): def do_autocast(*args, **kwargs): with torch.cuda.amp.autocast( enabled=enabled, dtype=torch.get_autocast_gpu_dtype(), cache_enabled=torch.is_autocast_cache_enabled(), ): return f(*args, **kwargs) return do_autocast def load_partial_from_config(config): return partial(get_obj_from_str(config["target"]), **config.get("params", dict())) def log_txt_as_img(wh, xc, size=10): # wh a tuple of (width, height) # xc a list of captions to plot b = len(xc) txts = list() for bi in range(b): txt = Image.new("RGB", wh, color="white") draw = ImageDraw.Draw(txt) font = ImageFont.truetype("data/DejaVuSans.ttf", size=size) nc = int(40 * (wh[0] / 256)) if isinstance(xc[bi], list): text_seq = xc[bi][0] else: text_seq = xc[bi] lines = "\n".join( text_seq[start : start + nc] for start in range(0, len(text_seq), nc) ) try: draw.text((0, 0), lines, fill="black", font=font) except UnicodeEncodeError: print("Cant encode string for logging. Skipping.") txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 txts.append(txt) txts = np.stack(txts) txts = torch.tensor(txts) return txts def partialclass(cls, *args, **kwargs): class NewCls(cls): __init__ = functools.partialmethod(cls.__init__, *args, **kwargs) return NewCls def make_path_absolute(path): fs, p = fsspec.core.url_to_fs(path) if fs.protocol == "file": return os.path.abspath(p) return path def ismap(x): if not isinstance(x, torch.Tensor): return False return (len(x.shape) == 4) and (x.shape[1] > 3) def isimage(x): if not isinstance(x, torch.Tensor): return False return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) def isheatmap(x): if not isinstance(x, torch.Tensor): return False return x.ndim == 2 def isneighbors(x): if not isinstance(x, torch.Tensor): return False return x.ndim == 5 and (x.shape[2] == 3 or x.shape[2] == 1) def exists(x): return x is not None def expand_dims_like(x, y): while x.dim() != y.dim(): x = x.unsqueeze(-1) return x def default(val, d): if exists(val): return val return d() if isfunction(d) else d def mean_flat(tensor): """ https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 Take the mean over all non-batch dimensions. """ return tensor.mean(dim=list(range(1, len(tensor.shape)))) def count_params(model, verbose=False): total_params = sum(p.numel() for p in model.parameters()) if verbose: print(f"{model.__class__.__name__} has {total_params * 1.0e-6:.2f} M params.") return total_params def instantiate_from_config(config): if "target" not in config: if config == "__is_first_stage__": return None elif config == "__is_unconditional__": return None raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", dict())) def get_obj_from_str(string, reload=False, invalidate_cache=True): module, cls = string.rsplit(".", 1) if invalidate_cache: importlib.invalidate_caches() if reload: module_imp = importlib.import_module(module) importlib.reload(module_imp) return getattr(importlib.import_module(module, package=None), cls) def append_zero(x): return torch.cat([x, x.new_zeros([1])]) def append_dims(x, target_dims): """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" dims_to_append = target_dims - x.ndim if dims_to_append < 0: raise ValueError( f"input has {x.ndim} dims but target_dims is {target_dims}, which is less" ) return x[(...,) + (None,) * dims_to_append] def load_model_from_config(config, ckpt, verbose=True, freeze=True): print(f"Loading model from {ckpt}") if ckpt.endswith("ckpt"): pl_sd = torch.load(ckpt, map_location="cpu") if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] elif ckpt.endswith("safetensors"): sd = load_safetensors(ckpt) elif ckpt.endswith("bin"): sd = torch.load(ckpt, map_location="cpu") else: raise NotImplementedError model = instantiate_from_config(config.model) m, u = model.load_state_dict(sd, strict=False) if len(m) > 0 and verbose: print("missing keys:") print(m) if len(u) > 0 and verbose: print("unexpected keys:") print(u) # if freeze: # for param in model.parameters(): # param.requires_grad = False model.eval() return model def format_number(num): num = float(num) num /= 1000.0 return "{:.0f}{}".format(num, "k") def get_num_params(model: torch.nn.ModuleList) -> int: num_params = sum(p.numel() for p in model.parameters()) return num_params def get_num_flop_per_token(num_params, model_config, seq_len) -> int: l, h, q, t = ( model_config.n_layers, model_config.n_heads, model_config.dim // model_config.n_heads, seq_len, ) # Reasoning behind the factor of 12 for the self-attention part of the formula: # 1. each self-attention has 2 matmul in the forward and 4 in the backward (6) # 2. the flash attention does 1 more matmul recomputation in the backward # but recomputation should not be counted in calculating MFU (+0) # 3. each matmul performs 1 multiplication and 1 addition (*2) # 4. we follow the convention and do not account for sparsity in causal attention flop_per_token = 6 * num_params + 12 * l * h * q * t return flop_per_token def get_num_flop_per_sequence_encoder_only(num_params, model_config, seq_len) -> int: l, h, q = ( model_config.n_layers, model_config.n_heads, model_config.dim // model_config.n_heads, ) # 1. 每个自注意力层有2个矩阵乘法在前向传播,4个在反向传播 (6) # 2. 每个矩阵乘法执行1次乘法和1次加法 (*2) # 3. 双向注意力需要考虑所有token对,所以是t^2而不是t flop_per_sequence = 6 * num_params + 12 * l * h * q * seq_len * seq_len return flop_per_sequence # hardcoded BF16 type peak flops for NVIDIA A100 and H100 GPU def get_peak_flops(device_name: str) -> int: if "A100" in device_name: # data from https://www.nvidia.com/en-us/data-center/a100/ return 312e12 elif "H100" in device_name: # data from https://www.nvidia.com/en-us/data-center/h100/ # NOTE: Specifications are one-half lower without sparsity. if "NVL" in device_name: return 1979e12 elif "PCIe" in device_name: return 756e12 else: # for SXM and other variants return 989e12 else: # for other GPU types, assume A100 return 312e12 @dataclass(frozen=True) class Color: black = "\033[30m" red = "\033[31m" green = "\033[32m" yellow = "\033[33m" blue = "\033[34m" magenta = "\033[35m" cyan = "\033[36m" white = "\033[37m" reset = "\033[39m" @dataclass(frozen=True) class NoColor: black = "" red = "" green = "" yellow = "" blue = "" magenta = "" cyan = "" white = "" reset = ""