# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from logging import getLogger import math import os from typing import Dict, List, Optional, Union, Tuple from types import MethodType import torch from torch import nn from torch.nn import functional as F from torch.nn.utils import parametrize # For now, don't do anything class DAMP(nn.Identity): def __init__(self, std: float): super().__init__() self.std = std def enable_damp(model: nn.Module, std: float): if isinstance(model, (list, tuple)): for m in model: enable_damp(m, std) return for name, module in model.named_modules(): if isinstance(module, nn.Linear): parametrize.register_parametrization(module, 'weight', DAMP(std)) def configure_damp_from_args(model: nn.Module, args): damp = getattr(args, 'damp', None) if damp: enable_damp(model, damp)