import os import json import datetime import torchvision import numpy as np import torch from omegaconf import OmegaConf from PIL import Image from torch.utils.data import DataLoader, Dataset from torchvision.datasets import ImageFolder from torchvision import transforms from torchvision.transforms.functional import hflip from accelerate.logging import get_logger from safetensors.torch import load_file from .sampler_utils import get_train_sampler logger = get_logger(__name__, log_level="INFO") def center_crop_arr(pil_image, image_size): """ Center cropping implementation from ADM. https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126 """ while min(*pil_image.size) >= 2 * image_size: pil_image = pil_image.resize( tuple(x // 2 for x in pil_image.size), resample=Image.Resampling.BOX ) scale = image_size / min(*pil_image.size) pil_image = pil_image.resize( tuple(round(x * scale) for x in pil_image.size), resample=Image.Resampling.BICUBIC ) arr = np.array(pil_image) crop_y = (arr.shape[0] - image_size) // 2 crop_x = (arr.shape[1] - image_size) // 2 return Image.fromarray(arr[crop_y: crop_y + image_size, crop_x: crop_x + image_size]) class ImagenetDictWrapper(Dataset): def __init__(self, dataset): super().__init__() self.dataset = dataset def __getitem__(self, i): x, y = self.dataset[i] return {"image": x, "label": y} def __len__(self): return len(self.dataset) class ImagenetLatentDataset(Dataset): def __init__(self, latent_dir, image_dir, image_size): super().__init__() self.RandomHorizontalFlipProb = 0.5 self.transform = transforms.Compose([ transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, image_size)), transforms.Lambda(lambda pil_image: (pil_image, hflip(pil_image))), transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])), # returns a 4D tensor transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) ]) self.dataset = [] for class_folder in os.listdir(image_dir): if os.path.isfile(os.path.join(image_dir, class_folder)): continue latent_class_folder = os.path.join(latent_dir, class_folder) image_class_folder = os.path.join(image_dir, class_folder) for file in os.listdir(image_class_folder): self.dataset.append( dict( latent=os.path.join(latent_class_folder, file.split('.')[0]+'.safetensors'), image=os.path.join(image_class_folder, file) ) ) def __len__(self): return len(self.dataset) def __getitem__(self, idx): data_item = dict() data = load_file(self.dataset[idx]['latent']) image = self.transform(Image.open(self.dataset[idx]['image']).convert("RGB")) if torch.rand(1) < self.RandomHorizontalFlipProb: data_item['latent'] = data['latent'][0] data_item['image'] = image[0] else: data_item['latent'] = data['latent'][1] data_item['image'] = image[1] data_item['label'] = data['label'] return data_item class C2ILoader(): def __init__(self, data_config): super().__init__() self.batch_size = data_config.dataloader.batch_size self.num_workers = data_config.dataloader.num_workers self.data_type = data_config.data_type if data_config.data_type == 'image': self.train_dataset = ImagenetDictWrapper(**OmegaConf.to_container(data_config.dataset)) elif data_config.data_type == 'latent': self.train_dataset = ImagenetLatentDataset(**OmegaConf.to_container(data_config.dataset)) else: raise NotImplementedError self.test_dataset = None self.val_dataset = None def train_len(self): return len(self.train_dataset) def train_dataloader(self, rank, world_size, global_batch_size, max_steps, resume_steps, seed): sampler = get_train_sampler( self.train_dataset, rank, world_size, global_batch_size, max_steps, resume_steps, seed ) return DataLoader( self.train_dataset, batch_size=self.batch_size, sampler=sampler, num_workers=self.num_workers, pin_memory=True, drop_last=True, prefetch_factor=2, ) def test_dataloader(self): return None def val_dataloader(self): return DataLoader( self.train_dataset, batch_size=self.batch_size, shuffle=self.shuffle, num_workers=self.num_workers, pin_memory=True, drop_last=True )