|
import gradio as gr |
|
import spaces |
|
import numpy as np |
|
import random |
|
import torch |
|
import functools |
|
from pathlib import Path |
|
from PIL import Image |
|
from omegaconf import OmegaConf |
|
from tim.schedulers.transition import TransitionSchedule |
|
from tim.utils.misc_utils import instantiate_from_config, init_from_ckpt |
|
from tim.models.vae import get_sd_vae, get_dc_ae, sd_vae_decode, dc_ae_decode |
|
from tim.models.utils.text_encoders import load_text_encoder, encode_prompt |
|
from kernels import get_kernel |
|
|
|
|
|
dtype = torch.bfloat16 |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 2048 |
|
|
|
|
|
model = None |
|
scheduler = None |
|
decode_func = None |
|
config = None |
|
text_encoder = None |
|
tokenizer = None |
|
|
|
|
|
def load_model_components(device: str = "cuda"): |
|
"""Load all model components once at startup""" |
|
global model, scheduler, decode_func, config, text_encoder, tokenizer |
|
|
|
try: |
|
|
|
config_path = "configs/t2i/tim_xl_p1_t2i.yaml" |
|
from huggingface_hub import hf_hub_download |
|
|
|
ckpt_path = hf_hub_download( |
|
repo_id="blanchon/TiM-checkpoints", filename="t2i_model.bin" |
|
) |
|
|
|
if not Path(config_path).exists(): |
|
raise FileNotFoundError(f"Config file not found: {config_path}") |
|
if not Path(ckpt_path).exists(): |
|
raise FileNotFoundError(f"Checkpoint file not found: {ckpt_path}") |
|
|
|
print("Loading configuration...") |
|
config = OmegaConf.load(config_path) |
|
model_config = config.model |
|
|
|
print("Loading VAE...") |
|
|
|
if "dc-ae" in model_config.vae_dir: |
|
dc_ae = get_dc_ae(model_config.vae_dir, dtype=torch.float32, device=device) |
|
dc_ae.enable_tiling(2560, 2560, 2560, 2560) |
|
decode_func = functools.partial(dc_ae_decode, dc_ae, slice_vae=True) |
|
elif "sd-vae" in model_config.vae_dir: |
|
sd_vae = get_sd_vae( |
|
model_config.vae_dir, dtype=torch.float32, device=device |
|
) |
|
decode_func = functools.partial(sd_vae_decode, sd_vae, slice_vae=True) |
|
else: |
|
raise ValueError("Unsupported VAE type") |
|
|
|
|
|
text_encoder, tokenizer = load_text_encoder( |
|
text_encoder_dir=config.model.text_encoder_dir, |
|
device=device, |
|
weight_dtype=dtype, |
|
) |
|
|
|
print("Loading main model...") |
|
|
|
model = instantiate_from_config(model_config.network).to( |
|
device=device, dtype=dtype |
|
) |
|
init_from_ckpt(model, checkpoint_dir=ckpt_path, ignore_keys=None, verbose=True) |
|
model.eval() |
|
|
|
print("Loading scheduler...") |
|
|
|
transport = instantiate_from_config(model_config.transport) |
|
scheduler = TransitionSchedule( |
|
transport=transport, **OmegaConf.to_container(model_config.transition_loss) |
|
) |
|
|
|
print("All components loaded successfully!") |
|
|
|
except Exception as e: |
|
print(f"Error loading model components: {e}") |
|
raise e |
|
|
|
|
|
@spaces.GPU(duration=60) |
|
def generate_image( |
|
prompt, |
|
seed=42, |
|
randomize_seed=False, |
|
width=1024, |
|
height=1024, |
|
guidance_scale=2.5, |
|
num_inference_steps=16, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
"""Generate image from text prompt""" |
|
try: |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
print(f"Using device: {device}") |
|
|
|
if not prompt or len(prompt.strip()) == 0: |
|
raise ValueError("Please enter a valid prompt") |
|
|
|
if model is None or scheduler is None: |
|
raise RuntimeError("Model components not loaded. Please check the setup.") |
|
|
|
|
|
if ( |
|
width < 256 |
|
or width > MAX_IMAGE_SIZE |
|
or height < 256 |
|
or height > MAX_IMAGE_SIZE |
|
): |
|
raise ValueError( |
|
f"Image dimensions must be between 256 and {MAX_IMAGE_SIZE}" |
|
) |
|
|
|
if width % 32 != 0 or height % 32 != 0: |
|
raise ValueError("Image dimensions must be divisible by 32") |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
|
|
spatial_downsample = 32 if "dc-ae" in config.model.vae_dir else 8 |
|
latent_h = int(height / spatial_downsample) |
|
latent_w = int(width / spatial_downsample) |
|
|
|
progress(0.1, desc="Generating random latent...") |
|
|
|
|
|
z = torch.randn( |
|
(1, model.in_channels, latent_h, latent_w), |
|
device=device, |
|
dtype=dtype, |
|
generator=generator, |
|
) |
|
|
|
progress(0.1, desc="Loading text encoder...") |
|
|
|
|
|
text_encoder.set_attn_implementation("flash_attention_2") |
|
text_encoder.to(device) |
|
|
|
|
|
cap_features, cap_mask = encode_prompt( |
|
tokenizer, |
|
text_encoder.model, |
|
device, |
|
dtype, |
|
[prompt], |
|
config.model.use_last_hidden_state, |
|
max_seq_length=config.model.max_seq_length, |
|
) |
|
|
|
|
|
null_cap_feat, null_cap_mask = encode_prompt( |
|
tokenizer, |
|
text_encoder.model, |
|
device, |
|
dtype, |
|
[""], |
|
config.model.use_last_hidden_state, |
|
max_seq_length=config.model.max_seq_length, |
|
) |
|
|
|
cur_max_seq_len = cap_mask.sum(dim=-1).max() |
|
y = cap_features[:, :cur_max_seq_len] |
|
|
|
y_null = null_cap_feat[:, :cur_max_seq_len] |
|
y_null = y_null.expand(y.shape[0], cur_max_seq_len, null_cap_feat.shape[-1]) |
|
|
|
|
|
with torch.no_grad(): |
|
samples = scheduler.sample( |
|
model, |
|
y, |
|
y_null, |
|
z, |
|
T_max=1.0, |
|
T_min=0.0, |
|
num_steps=num_inference_steps, |
|
cfg_scale=guidance_scale, |
|
cfg_low=0.0, |
|
cfg_high=1.0, |
|
stochasticity_ratio=0.0, |
|
sample_type="transition", |
|
step_callback=lambda step: progress( |
|
0.1 + 0.9 * (step / num_inference_steps), desc="Generating image..." |
|
), |
|
)[-1] |
|
samples = samples.to(torch.float32) |
|
|
|
|
|
images = decode_func(samples) |
|
images = ( |
|
torch.clamp(127.5 * images + 128.0, 0, 255) |
|
.permute(0, 2, 3, 1) |
|
.to(torch.uint8) |
|
.contiguous() |
|
) |
|
image = Image.fromarray(images[0].cpu().numpy()) |
|
|
|
progress(1.0, desc="Complete!") |
|
|
|
return image, seed |
|
|
|
except Exception as e: |
|
print(f"Error during image generation: {e}") |
|
|
|
error_img = Image.new("RGB", (512, 512), color="red") |
|
return error_img, seed |
|
|
|
|
|
|
|
examples = [ |
|
["a tiny astronaut hatching from an egg on the moon"], |
|
["πΆ Wearing πΆ flying on the π"], |
|
["an anime illustration of a wiener schnitzel"], |
|
["a photorealistic landscape of mountains at sunset"], |
|
["a majestic lion in a golden savanna at sunset"], |
|
["a futuristic city with flying cars and neon lights"], |
|
["a cozy cabin in a snowy forest with smoke coming from the chimney"], |
|
["a beautiful mermaid swimming in crystal clear water"], |
|
] |
|
|
|
|
|
css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
""" |
|
|
|
|
|
try: |
|
flash_attn = get_kernel("kernels-community/flash-attn") |
|
load_model_components(device) |
|
print("Model components loaded successfully!") |
|
except Exception as e: |
|
print(f"Error loading model components: {e}") |
|
print("Please ensure config and checkpoint files are available") |
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown("# TiM Text-to-Image Generator") |
|
gr.Markdown( |
|
"Generate high-quality images from text prompts using the TiM (Transition in Matching) model" |
|
) |
|
|
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Generate", scale=0) |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=1, |
|
maximum=15, |
|
step=0.1, |
|
value=2.5, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=16, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
fn=generate_image, |
|
inputs=[prompt], |
|
outputs=[result, seed], |
|
cache_examples=True, |
|
cache_mode="lazy", |
|
) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn=generate_image, |
|
inputs=[ |
|
prompt, |
|
seed, |
|
randomize_seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
], |
|
outputs=[result, seed], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|