Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,18 +2,36 @@ import gradio as gr
|
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
import spaces
|
| 5 |
-
from diffusers import AuraFlowPipeline
|
| 6 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
|
| 10 |
-
pipe =
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
).to("cuda")
|
| 14 |
|
| 15 |
MAX_SEED = np.iinfo(np.int32).max
|
| 16 |
-
MAX_IMAGE_SIZE =
|
| 17 |
|
| 18 |
@spaces.GPU()
|
| 19 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
|
@@ -23,15 +41,15 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_in
|
|
| 23 |
width = width,
|
| 24 |
height = height,
|
| 25 |
num_inference_steps = num_inference_steps,
|
| 26 |
-
generator = generator
|
|
|
|
| 27 |
).images[0]
|
| 28 |
return image, seed
|
| 29 |
|
| 30 |
examples = [
|
| 31 |
-
"
|
| 32 |
-
"
|
| 33 |
-
"
|
| 34 |
-
"A delicious ceviche cheesecake slice",
|
| 35 |
]
|
| 36 |
|
| 37 |
css="""
|
|
@@ -46,7 +64,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 46 |
with gr.Column(elem_id="col-container"):
|
| 47 |
gr.Markdown(f"""
|
| 48 |
# FLUX.1 Schnell
|
| 49 |
-
|
| 50 |
[[blog](https://blackforestlabs.ai/2024/07/31/announcing-black-forest-labs/)] [[model](https://black-forest-labs/FLUX.1-schnell)]]
|
| 51 |
""")
|
| 52 |
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
import spaces
|
|
|
|
| 5 |
import torch
|
| 6 |
+
from diffusers import FluxPipeline, FluxTransformer2DModel,FlowMatchEulerDiscreteScheduler, AutoencoderKL
|
| 7 |
+
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
| 8 |
+
|
| 9 |
+
dtype = torch.bfloat16
|
| 10 |
+
device = "cuda"
|
| 11 |
+
|
| 12 |
+
sd3_repo = "stabilityai/stable-diffusion-3-medium-diffusers"
|
| 13 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained (sd3_repo, subfolder="scheduler")
|
| 14 |
+
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
| 15 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
| 16 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(sd3_repo, subfolder="text_encoder_3", torch_dtype=dtype)
|
| 17 |
+
tokenizer_2 = T5TokenizerFast.from_pretrained(sd3_repo, subfolder="tokenizer_3", torch_dtype=dtype)
|
| 18 |
+
vae = AutoencoderKL.from_pretrained("diffusers-internal-dev/FLUX.1-schnell", subfolder="vae", torch_dtype=dtype)
|
| 19 |
+
transformer = FluxTransformer2DModel.from_pretrained("diffusers-internal-dev/FLUX.1-schnell", subfolder="transformer", torch_dtype=dtype)
|
| 20 |
|
| 21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
|
| 23 |
+
pipe = FluxPipeline(
|
| 24 |
+
scheduler=scheduler,
|
| 25 |
+
text_encoder=text_encoder,
|
| 26 |
+
tokenizer=tokenizer,
|
| 27 |
+
text_encoder_2=text_encoder_2,
|
| 28 |
+
tokenizer_2=tokenizer_2,
|
| 29 |
+
vae=vae,
|
| 30 |
+
transformer=transformer,
|
| 31 |
).to("cuda")
|
| 32 |
|
| 33 |
MAX_SEED = np.iinfo(np.int32).max
|
| 34 |
+
MAX_IMAGE_SIZE = 2048
|
| 35 |
|
| 36 |
@spaces.GPU()
|
| 37 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
| 41 |
width = width,
|
| 42 |
height = height,
|
| 43 |
num_inference_steps = num_inference_steps,
|
| 44 |
+
generator = generator,
|
| 45 |
+
guidance_scale=0.0
|
| 46 |
).images[0]
|
| 47 |
return image, seed
|
| 48 |
|
| 49 |
examples = [
|
| 50 |
+
"a tiny astronaut hatching from an egg on the moon",
|
| 51 |
+
"a cat holding a sign that says hello world",
|
| 52 |
+
"an anime illustration of a wiener schnitzel",
|
|
|
|
| 53 |
]
|
| 54 |
|
| 55 |
css="""
|
|
|
|
| 64 |
with gr.Column(elem_id="col-container"):
|
| 65 |
gr.Markdown(f"""
|
| 66 |
# FLUX.1 Schnell
|
| 67 |
+
[FLUX.1 Schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell) demo 12B parameters rectified flow transformer distilled from [FLUX.1 Pro](https://blackforestlabs.ai/) for fast generation in 4 steps
|
| 68 |
[[blog](https://blackforestlabs.ai/2024/07/31/announcing-black-forest-labs/)] [[model](https://black-forest-labs/FLUX.1-schnell)]]
|
| 69 |
""")
|
| 70 |
|