Spaces:
Running
Running
Upload 3 files
Browse files- app.py +29 -0
- best.pt +3 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ultralytics import YOLO
|
3 |
+
from PIL import Image
|
4 |
+
import cv2 # ✅ fix: lowercase
|
5 |
+
|
6 |
+
# Load the trained YOLO model
|
7 |
+
model = YOLO('best.pt')
|
8 |
+
|
9 |
+
# Define the prediction function
|
10 |
+
def detect_objects(img):
|
11 |
+
# Run inference
|
12 |
+
results = model(img)
|
13 |
+
# Get the plotted image with bounding boxes and convert BGR to RGB
|
14 |
+
annotated_img = cv2.cvtColor(results[0].plot(), cv2.COLOR_BGR2RGB)
|
15 |
+
return Image.fromarray(annotated_img)
|
16 |
+
|
17 |
+
# Create the Gradio interface
|
18 |
+
app = gr.Interface(
|
19 |
+
fn=detect_objects,
|
20 |
+
inputs=gr.Image(type="pil"),
|
21 |
+
outputs=gr.Image(type="pil"),
|
22 |
+
title="Car Defects Object Detection using YOLO",
|
23 |
+
description="Upload an image and the model will detect objects."
|
24 |
+
)
|
25 |
+
|
26 |
+
# Launch the app
|
27 |
+
# Launch app
|
28 |
+
if __name__ == "__main__":
|
29 |
+
app.launch()
|
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3cb4502b47062bb31e9add52b064a77cd6caa25ee1be41795fead5b4f136138e
|
3 |
+
size 87659251
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ultralytics
|
2 |
+
gradio
|
3 |
+
numpy
|
4 |
+
Pillow
|
5 |
+
opencv-python
|