import os import json import numpy as np import pandas as pd from huggingface_hub import hf_hub_download from llama_cpp import Llama import gradio as gr hub_model_path = hf_hub_download( repo_id='TheBloke/h2ogpt-4096-llama2-13B-GGML', filename='h2ogpt-4096-llama2-13b.ggmlv3.q2_K.bin' ) model = Llama( model_path=hub_model_path, n_ctx=220, # Maximum context size. TODO: Increase this later. use_mlock=True, # Force the system to keep the model in RAM. seed=77, n_batch=64 ) def generate(prompt): output = model(prompt, max_tokens=64, stop=['Q:', '\n'], echo=True) return json.dumps(output, indent=4) iface = gr.Interface(fn=generate, inputs='text', outputs='text') iface.launch()