import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Modeli yükleyin model_name = "bkaplan/MRL1" try: # Tokenizer ve modeli yükleme tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16) def respond(message, history, system_message, max_tokens, temperature, top_p): try: # Girdiyi hazırlama input_text = f"System: {system_message}\nUser: {message}\nAssistant:" # Tokenize etme inputs = tokenizer(input_text, return_tensors="pt").to(model.device) # Üretim parametreleri outputs = model.generate( **inputs, max_length=max_tokens, temperature=temperature, top_p=top_p, num_return_sequences=1, do_sample=True ) # Yanıtı çözme response = tokenizer.decode(outputs[0], skip_special_tokens=True) yield response except Exception as e: yield f"Hata oluştu: {str(e)}" # Gradio arayüzü demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ] ) if __name__ == "__main__": demo.launch(share=True) except Exception as e: print(f"Model yüklenirken hata oluştue: {e}")