bkaplan commited on
Commit
5a4cfee
·
verified ·
1 Parent(s): 5d707a1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -39
app.py CHANGED
@@ -1,46 +1,53 @@
1
  import gradio as gr
2
- from transformers import LlamaTokenizer, LlamaForCausalLM
3
  import torch
4
 
5
- # Genel bir LLaMA tokenizer'ı kullanın
6
- tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
7
- model = LlamaForCausalLM.from_pretrained("bkaplan/MRL1", device_map="auto", torch_dtype=torch.float16)
8
 
9
- def respond(message, history, system_message, max_tokens, temperature, top_p):
10
- try:
11
- # Girdiyi hazırlama
12
- input_text = f"System: {system_message}\nUser: {message}\nAssistant:"
13
-
14
- # Tokenize etme
15
- inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
16
-
17
- # Üretim parametreleri
18
- outputs = model.generate(
19
- **inputs,
20
- max_length=max_tokens,
21
- temperature=temperature,
22
- top_p=top_p,
23
- num_return_sequences=1,
24
- do_sample=True
25
- )
 
 
 
 
 
 
 
 
 
26
 
27
- # Yanıtı çözme
28
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
29
- yield response
30
-
31
- except Exception as e:
32
- yield f"Hata oluştu: {str(e)}"
 
 
 
 
 
 
 
33
 
34
- # Gradio arayüzü
35
- demo = gr.ChatInterface(
36
- respond,
37
- additional_inputs=[
38
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
39
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
40
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
41
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
42
- ]
43
- )
44
 
45
- if __name__ == "__main__":
46
- demo.launch(share=True)
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
  import torch
4
 
5
+ # Modeli yükleyin
6
+ model_name = "bkaplan/MRL1"
 
7
 
8
+ try:
9
+ # Tokenizer ve modeli yükleme
10
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
11
+ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
12
+
13
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
14
+ try:
15
+ # Girdiyi hazırlama
16
+ input_text = f"System: {system_message}\nUser: {message}\nAssistant:"
17
+
18
+ # Tokenize etme
19
+ inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
20
+
21
+ # Üretim parametreleri
22
+ outputs = model.generate(
23
+ **inputs,
24
+ max_length=max_tokens,
25
+ temperature=temperature,
26
+ top_p=top_p,
27
+ num_return_sequences=1,
28
+ do_sample=True
29
+ )
30
+
31
+ # Yanıtı çözme
32
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
33
+ yield response
34
 
35
+ except Exception as e:
36
+ yield f"Hata oluştu: {str(e)}"
37
+
38
+ # Gradio arayüzü
39
+ demo = gr.ChatInterface(
40
+ respond,
41
+ additional_inputs=[
42
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
43
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
44
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
45
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
46
+ ]
47
+ )
48
 
49
+ if __name__ == "__main__":
50
+ demo.launch(share=True)
 
 
 
 
 
 
 
 
51
 
52
+ except Exception as e:
53
+ print(f"Model yüklenirken hata oluştu: {e}")