|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
|
|
model_name = "bkaplan/MRL1" |
|
|
|
try: |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16) |
|
|
|
def respond(message, history, system_message, max_tokens, temperature, top_p): |
|
try: |
|
|
|
input_text = f"System: {system_message}\nUser: {message}\nAssistant:" |
|
|
|
|
|
inputs = tokenizer(input_text, return_tensors="pt").to(model.device) |
|
|
|
|
|
outputs = model.generate( |
|
**inputs, |
|
max_length=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
num_return_sequences=1, |
|
do_sample=True |
|
) |
|
|
|
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
yield response |
|
|
|
except Exception as e: |
|
yield f"Hata oluştu: {str(e)}" |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), |
|
] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True) |
|
|
|
except Exception as e: |
|
print(f"Model yüklenirken hata oluştue: {e}") |