andrew-bitmind commited on
Commit
f4d6783
·
verified ·
1 Parent(s): fdf7ac5
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -69,31 +69,31 @@ with demo:
69
  # Centered Title and Welcome message
70
  gr.HTML("""
71
  <div style="text-align:center;">
72
- <h1>Deepfake Detection Arena (DFD) Leaderboard</h1>
73
  </div>
74
  """)
75
 
76
  # Description/Intro Section
77
  gr.Markdown("""
78
- # The Open Benchmark for Detecting AI-Generated Images
79
 
80
  [DFD-Arena](https://github.com/BitMind-AI/dfd-arena) is the first benchmark to address the open-source computer vision community's need for a **comprehensive evaluation framework for state-of-the-art (SOTA) detection of AI-generated images**.
81
 
82
  While [previous studies](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9721302) have focused on benchmarking the SOTA on content-specific subsets of the deepfake detection problem, e.g. human face deepfake benchmarking via [DeepfakeBench](https://github.com/SCLBD/DeepfakeBench), these benchmarks do not adequately account for the broad spectrum of real and generated image types seen in everyday scenarios.
83
 
84
- ### Explore DFD-Arena
85
 
86
  Learn how the framework evaluates on diverse, content-rich images with semantic balance between real and generated data
87
 
88
- - [DFD Arena GitHub repository](https://github.com/BitMind-AI/dfd-arena)
89
 
90
- - [Companion blog page](https://bitmindlabs.notion.site/BitMind-Deepfake-Detection-Arena-106af85402838007830ece5a6f3f35a8?pvs=25)
91
 
92
- ### Authorship
93
 
94
  Both DFD-Arena and novel synthetic image datasets used for evaluation are created by [BitMind](https://www.bitmind.ca/).
95
 
96
- - [X/Twitter: @BitMindAI](https://x.com/BitMindAI)
97
  """)
98
 
99
  with gr.Tabs():
 
69
  # Centered Title and Welcome message
70
  gr.HTML("""
71
  <div style="text-align:center;">
72
+ <h1> Deepfake Detection Arena (DFD) Leaderboard</h1>
73
  </div>
74
  """)
75
 
76
  # Description/Intro Section
77
  gr.Markdown("""
78
+ # 🎯 The Open Benchmark for Detecting AI-Generated Images
79
 
80
  [DFD-Arena](https://github.com/BitMind-AI/dfd-arena) is the first benchmark to address the open-source computer vision community's need for a **comprehensive evaluation framework for state-of-the-art (SOTA) detection of AI-generated images**.
81
 
82
  While [previous studies](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9721302) have focused on benchmarking the SOTA on content-specific subsets of the deepfake detection problem, e.g. human face deepfake benchmarking via [DeepfakeBench](https://github.com/SCLBD/DeepfakeBench), these benchmarks do not adequately account for the broad spectrum of real and generated image types seen in everyday scenarios.
83
 
84
+ ### 🔍 Explore DFD-Arena
85
 
86
  Learn how the framework evaluates on diverse, content-rich images with semantic balance between real and generated data
87
 
88
+ - 📂 [DFD Arena GitHub repository](https://github.com/BitMind-AI/dfd-arena)
89
 
90
+ - 📝 [Companion blog page](https://bitmindlabs.notion.site/BitMind-Deepfake-Detection-Arena-106af85402838007830ece5a6f3f35a8?pvs=25)
91
 
92
+ ### ✍️ Authorship
93
 
94
  Both DFD-Arena and novel synthetic image datasets used for evaluation are created by [BitMind](https://www.bitmind.ca/).
95
 
96
+ - 🐦 [X/Twitter: @BitMindAI](https://x.com/BitMindAI)
97
  """)
98
 
99
  with gr.Tabs():