Spaces:
Running
Running
import torch | |
import transformers | |
import gradio as gr | |
from ragatouille import RAGPretrainedModel | |
from huggingface_hub import InferenceClient | |
import re | |
from datetime import datetime | |
import json | |
import os | |
import arxiv | |
from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search | |
retrieve_results = 10 | |
show_examples = False | |
llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] | |
token = os.getenv("HF_TOKEN") | |
generate_kwargs = dict( | |
temperature = None, | |
max_new_tokens = 512, | |
top_p = None, | |
do_sample = False, | |
) | |
## RAG Model | |
RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert") | |
try: | |
gr.Info("Setting up retriever, please wait...") | |
rag_initial_output = RAG.search("what is Mistral?", k = 1) | |
gr.Info("Retriever working successfully!") | |
except: | |
gr.Warning("Retriever not working!") | |
## Header | |
mark_text = '# 🔍 Search Results\n' | |
header_text = "# ArXiv CS RAG \n" | |
try: | |
with open("README.md", "r") as f: | |
mdfile = f.read() | |
date_pattern = r'Index Last Updated : \d{4}-\d{2}-\d{2}' | |
match = re.search(date_pattern, mdfile) | |
date = match.group().split(': ')[1] | |
formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y') | |
header_text += f'Index Last Updated: {formatted_date}\n' | |
index_info = f"Semantic Search - up to {formatted_date}" | |
except: | |
index_info = "Semantic Search" | |
database_choices = [index_info,'Arxiv Search - Latest - (EXPERIMENTAL)'] | |
## Arxiv API | |
arx_client = arxiv.Client() | |
is_arxiv_available = True | |
check_arxiv_result = get_arxiv_live_search("What is Mistral?", arx_client, retrieve_results) | |
if len(check_arxiv_result) == 0: | |
is_arxiv_available = False | |
print("Arxiv search not working, switching to default search ...") | |
database_choices = [index_info] | |
## Show examples (disabled) | |
if show_examples: | |
with open("sample_outputs.json", "r") as f: | |
sample_outputs = json.load(f) | |
output_placeholder = sample_outputs['output_placeholder'] | |
md_text_initial = sample_outputs['search_placeholder'] | |
else: | |
output_placeholder = None | |
md_text_initial = '' | |
def rag_cleaner(inp): | |
rank = inp['rank'] | |
title = inp['document_metadata']['title'] | |
content = inp['content'] | |
date = inp['document_metadata']['_time'] | |
return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}" | |
def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'): | |
if formatted: | |
sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and lets think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates." | |
message = f"Question: {question}" | |
if 'mistralai' in llm_model_picked: | |
return f"<s>" + f"[INST] {sys_instruction}" + f" {message}[/INST]" | |
elif 'gemma' in llm_model_picked: | |
return f"<bos><start_of_turn>user\n{sys_instruction}" + f" {message}<end_of_turn>\n" | |
return f"Context:\n {context} \n Given the following info, take a deep breath and lets think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n" | |
def get_references(question, retriever, k = retrieve_results): | |
rag_out = retriever.search(query=question, k=k) | |
return rag_out | |
def get_rag(message): | |
return get_references(message, RAG) | |
with gr.Blocks(theme = gr.themes.Soft()) as demo: | |
header = gr.Markdown(header_text) | |
with gr.Group(): | |
msg = gr.Textbox(label = 'Search', placeholder = 'What is Mistral?') | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(equal_height = True): | |
llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model') | |
llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context") | |
database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source') | |
stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False) | |
output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder) | |
input = gr.Textbox(show_label = False, visible = False) | |
gr_md = gr.Markdown(mark_text + md_text_initial) | |
def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'): | |
prompt_text_from_data = "" | |
database_to_use = database_choice | |
if database_choice == index_info: | |
rag_out = get_rag(message) | |
else: | |
arxiv_search_success = True | |
try: | |
rag_out = get_arxiv_live_search(message, arx_client, retrieve_results) | |
if len(rag_out) == 0: | |
arxiv_search_success = False | |
except: | |
arxiv_search_success = False | |
if not arxiv_search_success: | |
gr.Warning("Arxiv Search not working, switching to semantic search ...") | |
rag_out = get_rag(message) | |
database_to_use = index_info | |
md_text_updated = mark_text | |
for i in range(retrieve_results): | |
rag_answer = rag_out[i] | |
if i < llm_results_use: | |
md_text_paper, prompt_text = get_md_text_abstract(rag_answer, source = database_to_use, return_prompt_formatting = True) | |
prompt_text_from_data += f"{i+1}. {prompt_text}" | |
else: | |
md_text_paper = get_md_text_abstract(rag_answer, source = database_to_use) | |
md_text_updated += md_text_paper | |
prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked) | |
return md_text_updated, prompt | |
def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2', stream_outputs = False): | |
model_disabled_text = "LLM Model is disabled" | |
output = "" | |
if llm_model_picked == 'None': | |
if stream_outputs: | |
for out in model_disabled_text: | |
output += out | |
yield output | |
return output | |
else: | |
return model_disabled_text | |
client = InferenceClient(llm_model_picked, token = token) | |
try: | |
stream = client.text_generation(prompt, **generate_kwargs, stream=stream_outputs, details=False, return_full_text=False) | |
except: | |
gr.Warning("LLM Inference rate limit reached, try again later!") | |
return "" | |
if stream_outputs: | |
for response in stream: | |
output += response | |
yield output | |
return output | |
else: | |
return stream | |
msg.submit(update_with_rag_md, [msg, llm_results, database_src, llm_model], [gr_md, input]).success(ask_llm, [input, llm_model, stream_results], output_text) | |
demo.queue().launch() |