# import numpy as np # Unused import import torch import math from torch import nn import torch.nn.functional as F from nepalitokenizers import SentencePiece from torch.amp import autocast # Mixed precision from torch.utils.checkpoint import checkpoint # Gradient checkpointing # Device setup def get_device(): return torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') # Efficient Scaled Dot-Product Attention def scaled_dot_product(q, k, v, mask=None): d_k = q.size()[-1] scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k) # Simplified attention computation if mask is not None: scores += mask attention = F.softmax(scores, dim=-1) values = torch.matmul(attention, v) return values, attention # Precompute Positional Encoding class PositionalEncoding(nn.Module): def __init__(self, d_model, max_sequence_length): super().__init__() self.max_sequence_length = max_sequence_length self.d_model = d_model self.pe = self._create_positional_encoding() # Precompute during initialization def _create_positional_encoding(self): position = torch.arange(self.max_sequence_length).unsqueeze(1) div_term = torch.exp(torch.arange(0, self.d_model, 2).float() * (-math.log(10000.0) / self.d_model)) pe = torch.zeros(self.max_sequence_length, self.d_model) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) return pe def forward(self, x): seq_length = x.size(1) # Handle variable sequence lengths return self.pe[:seq_length, :].to(x.device) # Efficient Sentence Embedding with Caching class SentenceEmbedding(nn.Module): def __init__(self, max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN): super().__init__() self.vocab_size = len(language_to_index) self.max_sequence_length = max_sequence_length self.embedding = nn.Embedding(self.vocab_size, d_model) self.language_to_index = language_to_index self.position_encoder = PositionalEncoding(d_model, max_sequence_length) self.dropout = nn.Dropout(p=0.1) self.START_TOKEN = START_TOKEN self.END_TOKEN = END_TOKEN self.PADDING_TOKEN = PADDING_TOKEN self.tokenizer = SentencePiece() class SentenceEmbedding(nn.Module): def __init__(self, max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN): super().__init__() self.vocab_size = len(language_to_index) self.max_sequence_length = max_sequence_length self.embedding = nn.Embedding(self.vocab_size, d_model) self.language_to_index = language_to_index self.position_encoder = PositionalEncoding(d_model, max_sequence_length) self.dropout = nn.Dropout(p=0.1) self.START_TOKEN = START_TOKEN self.END_TOKEN = END_TOKEN self.PADDING_TOKEN = PADDING_TOKEN self.tokenizer = SentencePiece() def batch_tokenize(self, batch, start_token, end_token): """ Tokenizes a batch of sentences or processes pre-tokenized tensors. Args: batch: A list of sentences (str) or a tensor of token IDs. start_token: Whether to add a start token. end_token: Whether to add an end token. Returns: A tensor of token IDs with shape (batch_size, seq_len). """ # If input is already a tensor, return it directly if isinstance(batch, torch.Tensor): return batch.to(get_device()) # Process raw text inputs token_ids = [] for sentence in batch: if not isinstance(sentence, str): sentence = str(sentence).strip() if not sentence: sentence = self.PADDING_TOKEN try: tokens = self.tokenizer.encode(sentence) token_ids.append(tokens.ids) except Exception: print(f"Error tokenizing: {sentence}") token_ids.append([self.language_to_index.get(self.PADDING_TOKEN, 0)]) # Add start and end tokens if required if start_token: token_ids = [[self.language_to_index.get(self.START_TOKEN, self.PADDING_TOKEN)] + ids for ids in token_ids] if end_token: token_ids = [ids + [self.language_to_index.get(self.END_TOKEN, self.PADDING_TOKEN)] for ids in token_ids] # Truncate sequences to max_sequence_length token_ids = [ids[:self.max_sequence_length] for ids in token_ids] # Pad sequences to max_sequence_length token_ids = torch.nn.utils.rnn.pad_sequence( [torch.tensor(ids, dtype=torch.long) for ids in token_ids], batch_first=True, padding_value=self.language_to_index.get(self.PADDING_TOKEN, 0) ).to(get_device()) return token_ids def forward(self, x, start_token, end_token): """ Forward pass for the SentenceEmbedding module. Args: x: Input batch (list of sentences or tensor of token IDs). start_token: Whether to add a start token. end_token: Whether to add an end token. Returns: Embedded and positional-encoded output tensor. """ # Tokenize input if it's raw text if not isinstance(x, torch.Tensor): x = self.batch_tokenize(x, start_token, end_token) # Embed tokens and add positional encoding x = self.embedding(x) pos = self.position_encoder(x) x = self.dropout(x + pos) return x def forward(self, x, start_token, end_token): # If x is already a tensor, skip tokenization if not isinstance(x, torch.Tensor): x = self.batch_tokenize(x, start_token, end_token) x = self.embedding(x) pos = self.position_encoder(x) x = self.dropout(x + pos) return x # Multi-Head Attention with Efficient Matrix Operations class MultiHeadAttention(nn.Module): def __init__(self, d_model, num_heads): super().__init__() self.d_model = d_model self.num_heads = num_heads self.head_dim = d_model // num_heads self.qkv_layer = nn.Linear(d_model, 3 * d_model) self.linear_layer = nn.Linear(d_model, d_model) def forward(self, x, mask): batch_size, seq_length, d_model = x.size() qkv = self.qkv_layer(x) qkv = qkv.view(batch_size, seq_length, self.num_heads, 3 * self.head_dim) qkv = qkv.permute(0, 2, 1, 3) # (batch_size, num_heads, seq_length, 3 * head_dim) q, k, v = qkv.chunk(3, dim=-1) values, _ = scaled_dot_product(q, k, v, mask) # Ignore unused variable 'attention' values = values.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, d_model) out = self.linear_layer(values) return out # Multi-Head Cross Attention class MultiHeadCrossAttention(nn.Module): def __init__(self, d_model, num_heads): super().__init__() self.d_model = d_model self.num_heads = num_heads self.head_dim = d_model // num_heads self.kv_layer = nn.Linear(d_model, 2 * d_model) self.q_layer = nn.Linear(d_model, d_model) self.linear_layer = nn.Linear(d_model, d_model) def forward(self, x, y, mask): batch_size, x_seq_length, _ = x.size() # Encoder sequence length batch_size, y_seq_length, _ = y.size() # Decoder sequence length # Process encoder output (x) for Key/Value kv = self.kv_layer(x) kv = kv.view(batch_size, x_seq_length, self.num_heads, 2 * self.head_dim) kv = kv.permute(0, 2, 1, 3) # [batch, heads, x_seq, 2*head_dim] k, v = kv.chunk(2, dim=-1) # Each [batch, heads, x_seq, head_dim] # Process decoder input (y) for Query q = self.q_layer(y) q = q.view(batch_size, y_seq_length, self.num_heads, self.head_dim) q = q.permute(0, 2, 1, 3) # [batch, heads, y_seq, head_dim] # Compute attention values, _ = scaled_dot_product(q, k, v, mask) # Reshape back to original dimensions values = values.permute(0, 2, 1, 3).contiguous() values = values.view(batch_size, y_seq_length, self.d_model) return self.linear_layer(values) # Layer Normalization class LayerNormalization(nn.Module): def __init__(self, parameters_shape, eps=1e-5): super().__init__() self.layer_norm = nn.LayerNorm(parameters_shape, eps=eps) def forward(self, inputs): return self.layer_norm(inputs) # Position-wise Feed-Forward Network class PositionwiseFeedForward(nn.Module): def __init__(self, d_model, hidden, drop_prob=0.1): super().__init__() self.linear1 = nn.Linear(d_model, hidden) self.linear2 = nn.Linear(hidden, d_model) self.relu = nn.ReLU() self.dropout = nn.Dropout(p=drop_prob) def forward(self, x): x = self.linear1(x) x = self.relu(x) x = self.dropout(x) x = self.linear2(x) return x # Encoder Layer with Gradient Checkpointing class EncoderLayer(nn.Module): def __init__(self, d_model, ffn_hidden, num_heads, drop_prob): super().__init__() self.attention = MultiHeadAttention(d_model=d_model, num_heads=num_heads) self.norm1 = LayerNormalization(parameters_shape=[d_model]) self.dropout1 = nn.Dropout(p=drop_prob) self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=ffn_hidden, drop_prob=drop_prob) self.norm2 = LayerNormalization(parameters_shape=[d_model]) self.dropout2 = nn.Dropout(p=drop_prob) def forward(self, x, self_attention_mask): residual_x = x.clone() x = checkpoint(self.attention, x, self_attention_mask, preserve_rng_state=True, use_reentrant=False) # Gradient checkpointing x = self.dropout1(x) x = self.norm1(x + residual_x) residual_x = x.clone() x = checkpoint(self.ffn, x, preserve_rng_state=True, use_reentrant=False) # Gradient checkpointing x = self.dropout2(x) x = self.norm2(x + residual_x) return x # Sequential Encoder class SequentialEncoder(nn.Sequential): def forward(self, *inputs): x, self_attention_mask = inputs for module in self._modules.values(): x = module(x, self_attention_mask) return x # Encoder with Mixed Precision class Encoder(nn.Module): def __init__(self, d_model, ffn_hidden, num_heads, drop_prob, encoder_layer, max_sequence_length, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN): super().__init__() self.sentence_embedding = SentenceEmbedding(max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN) self.layers = SequentialEncoder(*[EncoderLayer(d_model, ffn_hidden, num_heads, drop_prob) for _ in range(encoder_layer)]) def forward(self, x, self_attention_mask, start_token, end_token): with autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu'): # Mixed precision x = self.sentence_embedding(x, start_token, end_token) x = self.layers(x, self_attention_mask) return x # Decoder Layer with Gradient Checkpointing class DecoderLayer(nn.Module): def __init__(self, d_model, ffn_hidden, num_heads, drop_prob): super().__init__() self.self_attention = MultiHeadAttention(d_model=d_model, num_heads=num_heads) self.layer_norm1 = LayerNormalization(parameters_shape=[d_model]) self.dropout1 = nn.Dropout(p=drop_prob) self.encoder_decoder_attention = MultiHeadCrossAttention(d_model=d_model, num_heads=num_heads) self.layer_norm2 = LayerNormalization(parameters_shape=[d_model]) self.dropout2 = nn.Dropout(p=drop_prob) self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=ffn_hidden, drop_prob=drop_prob) self.layer_norm3 = LayerNormalization(parameters_shape=[d_model]) self.dropout3 = nn.Dropout(p=drop_prob) def forward(self, x, y, self_attention_mask, cross_attention_mask): _y = y.clone() y = checkpoint(self.self_attention, y, self_attention_mask, preserve_rng_state=True, use_reentrant=False) # Gradient checkpointing y = self.dropout1(y) y = self.layer_norm1(y + _y) _y = y.clone() y = checkpoint(self.encoder_decoder_attention, x, y, cross_attention_mask, preserve_rng_state=True, use_reentrant=False) # Gradient checkpointing y = self.dropout2(y) y = self.layer_norm2(y + _y) _y = y.clone() y = checkpoint(self.ffn, y, preserve_rng_state=True, use_reentrant=False) # Gradient checkpointing y = self.dropout3(y) y = self.layer_norm3(y + _y) return y # Sequential Decoder class SequentialDecoder(nn.Sequential): def forward(self, *inputs): x, y, self_attention_mask, cross_attention_mask = inputs for module in self._modules.values(): y = module(x, y, self_attention_mask, cross_attention_mask) return y # Decoder with Mixed Precision class Decoder(nn.Module): def __init__(self, d_model, ffn_hidden, num_heads, drop_prob, decoder_layer, max_sequence_length, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN): super().__init__() self.sentence_embedding = SentenceEmbedding(max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN) self.layers = SequentialDecoder(*[DecoderLayer(d_model, ffn_hidden, num_heads, drop_prob) for _ in range(decoder_layer)]) def forward(self, x, y, self_attention_mask, cross_attention_mask, start_token, end_token): with autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu'): # Mixed precision y = self.sentence_embedding(y, start_token, end_token) y = self.layers(x, y, self_attention_mask, cross_attention_mask) return y # Transformer with Mixed Precision and Gradient Checkpointing class Transformer(nn.Module): def __init__(self, d_model, ffn_hidden, num_heads, drop_prob, encoder_layer, decoder_layer, max_sequence_length, ne_vocab_size, english_to_index, nepali_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN): super().__init__() self.encoder = Encoder(d_model, ffn_hidden, num_heads, drop_prob, encoder_layer, max_sequence_length, english_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN) self.decoder = Decoder(d_model, ffn_hidden, num_heads, drop_prob, decoder_layer, max_sequence_length, nepali_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN) self.linear = nn.Linear(d_model, ne_vocab_size) self.device = get_device() def forward(self, x, y, encoder_self_attention_mask=None, decoder_self_attention_mask=None, decoder_cross_attention_mask=None, enc_start_token=False, enc_end_token=False, dec_start_token=False, dec_end_token=False): with autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu'): # Mixed precision x = self.encoder(x, encoder_self_attention_mask, enc_start_token, enc_end_token) out = self.decoder(x, y, decoder_self_attention_mask, decoder_cross_attention_mask, dec_start_token, dec_end_token) out = self.linear(out) return out