init
Browse files- app.py +214 -0
- inference.py +124 -0
- requirements.txt +9 -0
- xtransformer.py +338 -0
app.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import io
|
5 |
+
from gtts import gTTS
|
6 |
+
import soundfile as sf
|
7 |
+
import tempfile
|
8 |
+
import logging
|
9 |
+
|
10 |
+
# Import your existing functionality
|
11 |
+
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
12 |
+
from transformers import Wav2Vec2ForCTC, AutoProcessor
|
13 |
+
|
14 |
+
logging.basicConfig(
|
15 |
+
level=logging.DEBUG,
|
16 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
17 |
+
)
|
18 |
+
|
19 |
+
# Initialize translation model
|
20 |
+
checkpoint_dir = "bishaltwr/final_m2m100" # Change to Hugging Face model ID when deployed
|
21 |
+
try:
|
22 |
+
tokenizer = M2M100Tokenizer.from_pretrained(checkpoint_dir)
|
23 |
+
model_m2m = M2M100ForConditionalGeneration.from_pretrained(checkpoint_dir)
|
24 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
+
model_m2m.to(device)
|
26 |
+
m2m_available = True
|
27 |
+
except Exception as e:
|
28 |
+
logging.error(f"Error loading M2M100 model: {e}")
|
29 |
+
m2m_available = False
|
30 |
+
|
31 |
+
# Initialize ASR model
|
32 |
+
model_id = "bishaltwr/wav2vec2-large-mms-1b-nepali"
|
33 |
+
try:
|
34 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
35 |
+
model_asr = Wav2Vec2ForCTC.from_pretrained(model_id, ignore_mismatched_sizes=True)
|
36 |
+
asr_available = True
|
37 |
+
except Exception as e:
|
38 |
+
logging.error(f"Error loading ASR model: {e}")
|
39 |
+
asr_available = False
|
40 |
+
|
41 |
+
# Initialize X-Transformer model
|
42 |
+
try:
|
43 |
+
from inference import translate as xtranslate
|
44 |
+
xtransformer_available = True
|
45 |
+
except Exception as e:
|
46 |
+
logging.error(f"Error loading XTransformer model: {e}")
|
47 |
+
xtransformer_available = False
|
48 |
+
|
49 |
+
def m2m_translate(text, source_lang, target_lang):
|
50 |
+
"""Translation using M2M100 model"""
|
51 |
+
if not m2m_available:
|
52 |
+
return "M2M100 model not available"
|
53 |
+
|
54 |
+
tokenizer.src_lang = source_lang
|
55 |
+
inputs = tokenizer(text, return_tensors="pt").to(device)
|
56 |
+
translated_tokens = model_m2m.generate(
|
57 |
+
**inputs,
|
58 |
+
forced_bos_token_id=tokenizer.get_lang_id(target_lang)
|
59 |
+
)
|
60 |
+
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
61 |
+
return translated_text
|
62 |
+
|
63 |
+
def transcribe_audio(audio_path, language="npi"):
|
64 |
+
"""Transcribe audio using ASR model"""
|
65 |
+
if not asr_available:
|
66 |
+
return "ASR model not available"
|
67 |
+
|
68 |
+
import librosa
|
69 |
+
audio, sr = librosa.load(audio_path, sr=16000)
|
70 |
+
processor.tokenizer.set_target_lang(language)
|
71 |
+
model_asr.load_adapter(language)
|
72 |
+
inputs = processor(audio, sampling_rate=16000, return_tensors="pt")
|
73 |
+
|
74 |
+
with torch.no_grad():
|
75 |
+
outputs = model_asr(**inputs).logits
|
76 |
+
|
77 |
+
ids = torch.argmax(outputs, dim=-1)[0]
|
78 |
+
transcription = processor.decode(ids, skip_special_tokens=True)
|
79 |
+
|
80 |
+
if language == "eng":
|
81 |
+
transcription = transcription.replace('<pad>','').replace('<unk>','')
|
82 |
+
else:
|
83 |
+
transcription = transcription.replace('<pad>',' ').replace('<unk>','')
|
84 |
+
|
85 |
+
return transcription
|
86 |
+
|
87 |
+
def text_to_speech(text):
|
88 |
+
"""Convert text to speech using gTTS"""
|
89 |
+
if not text:
|
90 |
+
return None
|
91 |
+
|
92 |
+
try:
|
93 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
|
94 |
+
tts = gTTS(text=text)
|
95 |
+
tts.save(temp_audio.name)
|
96 |
+
return temp_audio.name
|
97 |
+
except Exception as e:
|
98 |
+
logging.error(f"TTS error: {e}")
|
99 |
+
return None
|
100 |
+
|
101 |
+
def detect_language(text):
|
102 |
+
"""Simple language detection function"""
|
103 |
+
english_chars = sum(1 for c in text if c.isascii() and c.isalpha())
|
104 |
+
return "en" if english_chars > len(text) * 0.5 else "ne"
|
105 |
+
|
106 |
+
def translate_text(text, model_choice, source_lang=None, target_lang=None):
|
107 |
+
"""Main translation function"""
|
108 |
+
if not text:
|
109 |
+
return "Please enter some text to translate"
|
110 |
+
|
111 |
+
# Auto-detect language if not specified
|
112 |
+
if not source_lang:
|
113 |
+
source_lang = detect_language(text)
|
114 |
+
target_lang = "ne" if source_lang == "en" else "en"
|
115 |
+
|
116 |
+
# Choose the translation model
|
117 |
+
if model_choice == "XTransformer" and xtransformer_available:
|
118 |
+
return xtranslate(text)
|
119 |
+
elif model_choice == "M2M100" and m2m_available:
|
120 |
+
return m2m_translate(text, source_lang=source_lang, target_lang=target_lang)
|
121 |
+
else:
|
122 |
+
return "Selected model is not available"
|
123 |
+
|
124 |
+
# Set up the Gradio interface
|
125 |
+
with gr.Blocks(title="Nepali-English Translator") as demo:
|
126 |
+
gr.Markdown("# Nepali-English Translation Service")
|
127 |
+
gr.Markdown("Translate between Nepali and English, transcribe audio, and convert text to speech.")
|
128 |
+
|
129 |
+
# Set up tabs for different functions
|
130 |
+
with gr.Tabs():
|
131 |
+
# Text Translation Tab
|
132 |
+
with gr.TabItem("Text Translation"):
|
133 |
+
with gr.Row():
|
134 |
+
with gr.Column():
|
135 |
+
text_input = gr.Textbox(label="Input Text", lines=5)
|
136 |
+
|
137 |
+
with gr.Row():
|
138 |
+
model_choice = gr.Radio(
|
139 |
+
choices=["XTransformer", "M2M100"],
|
140 |
+
value="XTransformer",
|
141 |
+
label="Translation Model"
|
142 |
+
)
|
143 |
+
|
144 |
+
with gr.Row():
|
145 |
+
source_lang = gr.Dropdown(
|
146 |
+
choices=["Auto-detect", "en", "ne"],
|
147 |
+
value="Auto-detect",
|
148 |
+
label="Source Language",
|
149 |
+
visible=True
|
150 |
+
)
|
151 |
+
target_lang = gr.Dropdown(
|
152 |
+
choices=["Auto-select", "en", "ne"],
|
153 |
+
value="Auto-select",
|
154 |
+
label="Target Language",
|
155 |
+
visible=True
|
156 |
+
)
|
157 |
+
|
158 |
+
translate_button = gr.Button("Translate")
|
159 |
+
|
160 |
+
with gr.Column():
|
161 |
+
translation_output = gr.Textbox(label="Translation Output", lines=5)
|
162 |
+
tts_button = gr.Button("Convert to Speech")
|
163 |
+
audio_output = gr.Audio(label="Audio Output")
|
164 |
+
|
165 |
+
# Speech to Text Tab
|
166 |
+
with gr.TabItem("Speech to Text"):
|
167 |
+
with gr.Column():
|
168 |
+
audio_input = gr.Audio(label="Upload or Record Audio", type="filepath")
|
169 |
+
asr_language = gr.Radio(
|
170 |
+
choices=["eng", "npi"],
|
171 |
+
value="npi",
|
172 |
+
label="Speech Language"
|
173 |
+
)
|
174 |
+
transcribe_button = gr.Button("Transcribe")
|
175 |
+
transcription_output = gr.Textbox(label="Transcription Output", lines=3)
|
176 |
+
|
177 |
+
# Define event handlers
|
178 |
+
def process_translation(text, model, src_lang, tgt_lang):
|
179 |
+
if src_lang == "Auto-detect":
|
180 |
+
src_lang = None
|
181 |
+
if tgt_lang == "Auto-select":
|
182 |
+
tgt_lang = None
|
183 |
+
return translate_text(text, model, src_lang, tgt_lang)
|
184 |
+
|
185 |
+
def process_tts(text):
|
186 |
+
return text_to_speech(text)
|
187 |
+
|
188 |
+
def process_transcription(audio_path, language):
|
189 |
+
if not audio_path:
|
190 |
+
return "Please upload or record audio"
|
191 |
+
return transcribe_audio(audio_path, language)
|
192 |
+
|
193 |
+
# Connect the components
|
194 |
+
translate_button.click(
|
195 |
+
process_translation,
|
196 |
+
inputs=[text_input, model_choice, source_lang, target_lang],
|
197 |
+
outputs=translation_output
|
198 |
+
)
|
199 |
+
|
200 |
+
tts_button.click(
|
201 |
+
process_tts,
|
202 |
+
inputs=translation_output,
|
203 |
+
outputs=audio_output
|
204 |
+
)
|
205 |
+
|
206 |
+
transcribe_button.click(
|
207 |
+
process_transcription,
|
208 |
+
inputs=[audio_input, asr_language],
|
209 |
+
outputs=transcription_output
|
210 |
+
)
|
211 |
+
|
212 |
+
# Launch the app
|
213 |
+
if __name__ == "__main__":
|
214 |
+
demo.launch()
|
inference.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from xtransformer import Transformer
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from nepalitokenizers import SentencePiece
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
import re
|
7 |
+
|
8 |
+
# Initialize tokenizers
|
9 |
+
tokenizer_en = SentencePiece() # English tokenizer
|
10 |
+
tokenizer_ne = SentencePiece() # Nepali tokenizer
|
11 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
12 |
+
|
13 |
+
# Define special tokens and their IDs
|
14 |
+
START_TOKEN = '<START>'
|
15 |
+
PADDING_TOKEN = '<PADDING>'
|
16 |
+
END_TOKEN = '<END>'
|
17 |
+
SPECIAL_TOKENS = {
|
18 |
+
START_TOKEN: max(tokenizer_en.get_vocab_size(), tokenizer_ne.get_vocab_size()),
|
19 |
+
PADDING_TOKEN: max(tokenizer_en.get_vocab_size(), tokenizer_ne.get_vocab_size()) + 1,
|
20 |
+
END_TOKEN: max(tokenizer_en.get_vocab_size(), tokenizer_ne.get_vocab_size()) + 2,
|
21 |
+
}
|
22 |
+
|
23 |
+
# Update vocabulary sizes
|
24 |
+
en_vocab_size = tokenizer_en.get_vocab_size() + len(SPECIAL_TOKENS)
|
25 |
+
ne_vocab_size = tokenizer_ne.get_vocab_size() + len(SPECIAL_TOKENS)
|
26 |
+
|
27 |
+
# Create token-to-index mappings
|
28 |
+
english_to_index = {token: i for i, token in enumerate(tokenizer_en.get_vocab())}
|
29 |
+
nepali_to_index = {token: i for i, token in enumerate(tokenizer_ne.get_vocab())}
|
30 |
+
english_to_index.update(SPECIAL_TOKENS)
|
31 |
+
nepali_to_index.update(SPECIAL_TOKENS)
|
32 |
+
|
33 |
+
# Hyperparameters
|
34 |
+
max_sequence_length = 100
|
35 |
+
d_model = 512
|
36 |
+
batch_size = 32
|
37 |
+
ffn_hidden = 2048
|
38 |
+
num_heads = 8
|
39 |
+
drop_prob = 0.1
|
40 |
+
encoder_layers = 6
|
41 |
+
decoder_layers = 4
|
42 |
+
|
43 |
+
# Initialize the Transformer model
|
44 |
+
transformer = Transformer(
|
45 |
+
d_model, ffn_hidden, num_heads, drop_prob, encoder_layers, decoder_layers,
|
46 |
+
max_sequence_length, ne_vocab_size, english_to_index, nepali_to_index,
|
47 |
+
START_TOKEN, END_TOKEN, PADDING_TOKEN
|
48 |
+
).to(device)
|
49 |
+
|
50 |
+
# Function to encode text with special tokens
|
51 |
+
def encode_with_special_tokens(text, tokenizer, max_sequence_length, add_start_end=True):
|
52 |
+
tokens = tokenizer.encode(text).ids
|
53 |
+
if add_start_end:
|
54 |
+
tokens = [SPECIAL_TOKENS[START_TOKEN]] + tokens + [SPECIAL_TOKENS[END_TOKEN]]
|
55 |
+
tokens = tokens[:max_sequence_length]
|
56 |
+
padding = [SPECIAL_TOKENS[PADDING_TOKEN]] * (max_sequence_length - len(tokens))
|
57 |
+
return tokens + padding
|
58 |
+
|
59 |
+
# Function to decode token IDs, filtering out special tokens
|
60 |
+
def decode_with_special_tokens(token_ids, tokenizer):
|
61 |
+
token_ids = [token_id for token_id in token_ids if token_id not in SPECIAL_TOKENS.values()]
|
62 |
+
return tokenizer.decode(token_ids)
|
63 |
+
|
64 |
+
# Mask creation
|
65 |
+
NEG_INFTY = -1e9
|
66 |
+
def create_masks(eng_batch, decoder_input):
|
67 |
+
batch_size, enc_seq_length = eng_batch.size(0), eng_batch.size(1)
|
68 |
+
dec_seq_length = decoder_input.size(1)
|
69 |
+
device = eng_batch.device
|
70 |
+
|
71 |
+
encoder_padding_mask = (eng_batch == SPECIAL_TOKENS[PADDING_TOKEN]).unsqueeze(1).unsqueeze(2)
|
72 |
+
decoder_padding_mask_self = (decoder_input == SPECIAL_TOKENS[PADDING_TOKEN]).unsqueeze(1).unsqueeze(2)
|
73 |
+
look_ahead_mask = torch.triu(torch.ones(dec_seq_length, dec_seq_length, device=device), diagonal=1).bool().unsqueeze(0).unsqueeze(0)
|
74 |
+
decoder_padding_mask_cross = (eng_batch == SPECIAL_TOKENS[PADDING_TOKEN]).unsqueeze(1).unsqueeze(2)
|
75 |
+
|
76 |
+
encoder_mask = encoder_padding_mask * NEG_INFTY
|
77 |
+
decoder_self_mask = (look_ahead_mask | decoder_padding_mask_self) * NEG_INFTY
|
78 |
+
decoder_cross_mask = decoder_padding_mask_cross * NEG_INFTY
|
79 |
+
|
80 |
+
return encoder_mask, decoder_self_mask, decoder_cross_mask
|
81 |
+
|
82 |
+
# Translation function
|
83 |
+
def translate(sentence):
|
84 |
+
def is_english(text):
|
85 |
+
# Check if the text contains only English letters and spaces using regular expression
|
86 |
+
return re.match(r'^[a-zA-Z\s]+$', text) is not None
|
87 |
+
# Determine which model to use based on input language
|
88 |
+
if is_english(sentence):
|
89 |
+
clean_sentence = re.sub(r'[^a-zA-Z0-9\s]', '', sentence.strip()).lower()
|
90 |
+
checkpoint_file = "checkpoint_en_ne.pth"
|
91 |
+
print('using english to nepali transformer')
|
92 |
+
else:
|
93 |
+
clean_sentence = re.sub(r'[^ऀ-ॿ\s]', '', sentence.strip())
|
94 |
+
checkpoint_file = "checkpoint_ne_en.pth"
|
95 |
+
print('using nepali to english transformer')
|
96 |
+
|
97 |
+
# Download the checkpoint from Hugging Face Hub
|
98 |
+
try:
|
99 |
+
checkpoint_path = hf_hub_download(
|
100 |
+
repo_id="bishaltwr/xtransformer",
|
101 |
+
filename=checkpoint_file,
|
102 |
+
repo_type="model"
|
103 |
+
)
|
104 |
+
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
|
105 |
+
transformer.load_state_dict(checkpoint['model_state'])
|
106 |
+
transformer.eval()
|
107 |
+
except Exception as e:
|
108 |
+
print(f"Error loading checkpoint: {e}")
|
109 |
+
return f"Translation failed: Could not load model checkpoint ({str(e)})"
|
110 |
+
|
111 |
+
with torch.no_grad():
|
112 |
+
eng_tokens = encode_with_special_tokens(clean_sentence, tokenizer_en, max_sequence_length)
|
113 |
+
eng_batch = torch.tensor([eng_tokens]).to(device)
|
114 |
+
ne_batch = torch.tensor([[SPECIAL_TOKENS[START_TOKEN]] + [SPECIAL_TOKENS[PADDING_TOKEN]] * (max_sequence_length - 1)]).to(device)
|
115 |
+
|
116 |
+
for i in range(1, max_sequence_length):
|
117 |
+
encoder_mask, decoder_mask, cross_mask = create_masks(eng_batch, ne_batch)
|
118 |
+
predictions = transformer(eng_batch, ne_batch, encoder_mask, decoder_mask, cross_mask)
|
119 |
+
next_token = torch.argmax(predictions[:, i - 1, :], dim=-1)
|
120 |
+
if next_token.item() == SPECIAL_TOKENS[END_TOKEN]:
|
121 |
+
break
|
122 |
+
ne_batch[0, i] = next_token
|
123 |
+
|
124 |
+
return decode_with_special_tokens(ne_batch[0].tolist(), tokenizer_ne)
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=5.20.1
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
librosa
|
5 |
+
soundfile
|
6 |
+
gtts
|
7 |
+
nepalitokenizers
|
8 |
+
sounddevice
|
9 |
+
hf_hub_download
|
xtransformer.py
ADDED
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import numpy as np # Unused import
|
2 |
+
import torch
|
3 |
+
import math
|
4 |
+
from torch import nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from nepalitokenizers import SentencePiece
|
7 |
+
from torch.amp import autocast # Mixed precision
|
8 |
+
from torch.utils.checkpoint import checkpoint # Gradient checkpointing
|
9 |
+
|
10 |
+
# Device setup
|
11 |
+
def get_device():
|
12 |
+
return torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
13 |
+
|
14 |
+
# Efficient Scaled Dot-Product Attention
|
15 |
+
def scaled_dot_product(q, k, v, mask=None):
|
16 |
+
d_k = q.size()[-1]
|
17 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k) # Simplified attention computation
|
18 |
+
if mask is not None:
|
19 |
+
scores += mask
|
20 |
+
attention = F.softmax(scores, dim=-1)
|
21 |
+
values = torch.matmul(attention, v)
|
22 |
+
return values, attention
|
23 |
+
|
24 |
+
# Precompute Positional Encoding
|
25 |
+
class PositionalEncoding(nn.Module):
|
26 |
+
def __init__(self, d_model, max_sequence_length):
|
27 |
+
super().__init__()
|
28 |
+
self.max_sequence_length = max_sequence_length
|
29 |
+
self.d_model = d_model
|
30 |
+
self.pe = self._create_positional_encoding() # Precompute during initialization
|
31 |
+
|
32 |
+
def _create_positional_encoding(self):
|
33 |
+
position = torch.arange(self.max_sequence_length).unsqueeze(1)
|
34 |
+
div_term = torch.exp(torch.arange(0, self.d_model, 2).float() * (-math.log(10000.0) / self.d_model))
|
35 |
+
pe = torch.zeros(self.max_sequence_length, self.d_model)
|
36 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
37 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
38 |
+
return pe
|
39 |
+
|
40 |
+
def forward(self, x):
|
41 |
+
seq_length = x.size(1) # Handle variable sequence lengths
|
42 |
+
return self.pe[:seq_length, :].to(x.device)
|
43 |
+
|
44 |
+
# Efficient Sentence Embedding with Caching
|
45 |
+
class SentenceEmbedding(nn.Module):
|
46 |
+
def __init__(self, max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN):
|
47 |
+
super().__init__()
|
48 |
+
self.vocab_size = len(language_to_index)
|
49 |
+
self.max_sequence_length = max_sequence_length
|
50 |
+
self.embedding = nn.Embedding(self.vocab_size, d_model)
|
51 |
+
self.language_to_index = language_to_index
|
52 |
+
self.position_encoder = PositionalEncoding(d_model, max_sequence_length)
|
53 |
+
self.dropout = nn.Dropout(p=0.1)
|
54 |
+
self.START_TOKEN = START_TOKEN
|
55 |
+
self.END_TOKEN = END_TOKEN
|
56 |
+
self.PADDING_TOKEN = PADDING_TOKEN
|
57 |
+
self.tokenizer = SentencePiece()
|
58 |
+
|
59 |
+
class SentenceEmbedding(nn.Module):
|
60 |
+
def __init__(self, max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN):
|
61 |
+
super().__init__()
|
62 |
+
self.vocab_size = len(language_to_index)
|
63 |
+
self.max_sequence_length = max_sequence_length
|
64 |
+
self.embedding = nn.Embedding(self.vocab_size, d_model)
|
65 |
+
self.language_to_index = language_to_index
|
66 |
+
self.position_encoder = PositionalEncoding(d_model, max_sequence_length)
|
67 |
+
self.dropout = nn.Dropout(p=0.1)
|
68 |
+
self.START_TOKEN = START_TOKEN
|
69 |
+
self.END_TOKEN = END_TOKEN
|
70 |
+
self.PADDING_TOKEN = PADDING_TOKEN
|
71 |
+
self.tokenizer = SentencePiece()
|
72 |
+
|
73 |
+
def batch_tokenize(self, batch, start_token, end_token):
|
74 |
+
"""
|
75 |
+
Tokenizes a batch of sentences or processes pre-tokenized tensors.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
batch: A list of sentences (str) or a tensor of token IDs.
|
79 |
+
start_token: Whether to add a start token.
|
80 |
+
end_token: Whether to add an end token.
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
A tensor of token IDs with shape (batch_size, seq_len).
|
84 |
+
"""
|
85 |
+
# If input is already a tensor, return it directly
|
86 |
+
if isinstance(batch, torch.Tensor):
|
87 |
+
return batch.to(get_device())
|
88 |
+
|
89 |
+
# Process raw text inputs
|
90 |
+
token_ids = []
|
91 |
+
for sentence in batch:
|
92 |
+
if not isinstance(sentence, str):
|
93 |
+
sentence = str(sentence).strip()
|
94 |
+
if not sentence:
|
95 |
+
sentence = self.PADDING_TOKEN
|
96 |
+
try:
|
97 |
+
tokens = self.tokenizer.encode(sentence)
|
98 |
+
token_ids.append(tokens.ids)
|
99 |
+
except Exception:
|
100 |
+
print(f"Error tokenizing: {sentence}")
|
101 |
+
token_ids.append([self.language_to_index.get(self.PADDING_TOKEN, 0)])
|
102 |
+
|
103 |
+
# Add start and end tokens if required
|
104 |
+
if start_token:
|
105 |
+
token_ids = [[self.language_to_index.get(self.START_TOKEN, self.PADDING_TOKEN)] + ids for ids in token_ids]
|
106 |
+
if end_token:
|
107 |
+
token_ids = [ids + [self.language_to_index.get(self.END_TOKEN, self.PADDING_TOKEN)] for ids in token_ids]
|
108 |
+
|
109 |
+
# Truncate sequences to max_sequence_length
|
110 |
+
token_ids = [ids[:self.max_sequence_length] for ids in token_ids]
|
111 |
+
|
112 |
+
# Pad sequences to max_sequence_length
|
113 |
+
token_ids = torch.nn.utils.rnn.pad_sequence(
|
114 |
+
[torch.tensor(ids, dtype=torch.long) for ids in token_ids],
|
115 |
+
batch_first=True,
|
116 |
+
padding_value=self.language_to_index.get(self.PADDING_TOKEN, 0)
|
117 |
+
).to(get_device())
|
118 |
+
|
119 |
+
return token_ids
|
120 |
+
|
121 |
+
def forward(self, x, start_token, end_token):
|
122 |
+
"""
|
123 |
+
Forward pass for the SentenceEmbedding module.
|
124 |
+
|
125 |
+
Args:
|
126 |
+
x: Input batch (list of sentences or tensor of token IDs).
|
127 |
+
start_token: Whether to add a start token.
|
128 |
+
end_token: Whether to add an end token.
|
129 |
+
|
130 |
+
Returns:
|
131 |
+
Embedded and positional-encoded output tensor.
|
132 |
+
"""
|
133 |
+
# Tokenize input if it's raw text
|
134 |
+
if not isinstance(x, torch.Tensor):
|
135 |
+
x = self.batch_tokenize(x, start_token, end_token)
|
136 |
+
|
137 |
+
# Embed tokens and add positional encoding
|
138 |
+
x = self.embedding(x)
|
139 |
+
pos = self.position_encoder(x)
|
140 |
+
x = self.dropout(x + pos)
|
141 |
+
return x
|
142 |
+
def forward(self, x, start_token, end_token):
|
143 |
+
# If x is already a tensor, skip tokenization
|
144 |
+
if not isinstance(x, torch.Tensor):
|
145 |
+
x = self.batch_tokenize(x, start_token, end_token)
|
146 |
+
x = self.embedding(x)
|
147 |
+
pos = self.position_encoder(x)
|
148 |
+
x = self.dropout(x + pos)
|
149 |
+
return x
|
150 |
+
|
151 |
+
# Multi-Head Attention with Efficient Matrix Operations
|
152 |
+
class MultiHeadAttention(nn.Module):
|
153 |
+
def __init__(self, d_model, num_heads):
|
154 |
+
super().__init__()
|
155 |
+
self.d_model = d_model
|
156 |
+
self.num_heads = num_heads
|
157 |
+
self.head_dim = d_model // num_heads
|
158 |
+
self.qkv_layer = nn.Linear(d_model, 3 * d_model)
|
159 |
+
self.linear_layer = nn.Linear(d_model, d_model)
|
160 |
+
|
161 |
+
def forward(self, x, mask):
|
162 |
+
batch_size, seq_length, d_model = x.size()
|
163 |
+
qkv = self.qkv_layer(x)
|
164 |
+
qkv = qkv.view(batch_size, seq_length, self.num_heads, 3 * self.head_dim)
|
165 |
+
qkv = qkv.permute(0, 2, 1, 3) # (batch_size, num_heads, seq_length, 3 * head_dim)
|
166 |
+
q, k, v = qkv.chunk(3, dim=-1)
|
167 |
+
values, _ = scaled_dot_product(q, k, v, mask) # Ignore unused variable 'attention'
|
168 |
+
values = values.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, d_model)
|
169 |
+
out = self.linear_layer(values)
|
170 |
+
return out
|
171 |
+
|
172 |
+
# Multi-Head Cross Attention
|
173 |
+
class MultiHeadCrossAttention(nn.Module):
|
174 |
+
def __init__(self, d_model, num_heads):
|
175 |
+
super().__init__()
|
176 |
+
self.d_model = d_model
|
177 |
+
self.num_heads = num_heads
|
178 |
+
self.head_dim = d_model // num_heads
|
179 |
+
self.kv_layer = nn.Linear(d_model, 2 * d_model)
|
180 |
+
self.q_layer = nn.Linear(d_model, d_model)
|
181 |
+
self.linear_layer = nn.Linear(d_model, d_model)
|
182 |
+
|
183 |
+
def forward(self, x, y, mask):
|
184 |
+
batch_size, x_seq_length, _ = x.size() # Encoder sequence length
|
185 |
+
batch_size, y_seq_length, _ = y.size() # Decoder sequence length
|
186 |
+
|
187 |
+
# Process encoder output (x) for Key/Value
|
188 |
+
kv = self.kv_layer(x)
|
189 |
+
kv = kv.view(batch_size, x_seq_length, self.num_heads, 2 * self.head_dim)
|
190 |
+
kv = kv.permute(0, 2, 1, 3) # [batch, heads, x_seq, 2*head_dim]
|
191 |
+
k, v = kv.chunk(2, dim=-1) # Each [batch, heads, x_seq, head_dim]
|
192 |
+
|
193 |
+
# Process decoder input (y) for Query
|
194 |
+
q = self.q_layer(y)
|
195 |
+
q = q.view(batch_size, y_seq_length, self.num_heads, self.head_dim)
|
196 |
+
q = q.permute(0, 2, 1, 3) # [batch, heads, y_seq, head_dim]
|
197 |
+
|
198 |
+
# Compute attention
|
199 |
+
values, _ = scaled_dot_product(q, k, v, mask)
|
200 |
+
|
201 |
+
# Reshape back to original dimensions
|
202 |
+
values = values.permute(0, 2, 1, 3).contiguous()
|
203 |
+
values = values.view(batch_size, y_seq_length, self.d_model)
|
204 |
+
return self.linear_layer(values)
|
205 |
+
|
206 |
+
# Layer Normalization
|
207 |
+
class LayerNormalization(nn.Module):
|
208 |
+
def __init__(self, parameters_shape, eps=1e-5):
|
209 |
+
super().__init__()
|
210 |
+
self.layer_norm = nn.LayerNorm(parameters_shape, eps=eps)
|
211 |
+
|
212 |
+
def forward(self, inputs):
|
213 |
+
return self.layer_norm(inputs)
|
214 |
+
|
215 |
+
# Position-wise Feed-Forward Network
|
216 |
+
class PositionwiseFeedForward(nn.Module):
|
217 |
+
def __init__(self, d_model, hidden, drop_prob=0.1):
|
218 |
+
super().__init__()
|
219 |
+
self.linear1 = nn.Linear(d_model, hidden)
|
220 |
+
self.linear2 = nn.Linear(hidden, d_model)
|
221 |
+
self.relu = nn.ReLU()
|
222 |
+
self.dropout = nn.Dropout(p=drop_prob)
|
223 |
+
|
224 |
+
def forward(self, x):
|
225 |
+
x = self.linear1(x)
|
226 |
+
x = self.relu(x)
|
227 |
+
x = self.dropout(x)
|
228 |
+
x = self.linear2(x)
|
229 |
+
return x
|
230 |
+
|
231 |
+
# Encoder Layer with Gradient Checkpointing
|
232 |
+
class EncoderLayer(nn.Module):
|
233 |
+
def __init__(self, d_model, ffn_hidden, num_heads, drop_prob):
|
234 |
+
super().__init__()
|
235 |
+
self.attention = MultiHeadAttention(d_model=d_model, num_heads=num_heads)
|
236 |
+
self.norm1 = LayerNormalization(parameters_shape=[d_model])
|
237 |
+
self.dropout1 = nn.Dropout(p=drop_prob)
|
238 |
+
self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=ffn_hidden, drop_prob=drop_prob)
|
239 |
+
self.norm2 = LayerNormalization(parameters_shape=[d_model])
|
240 |
+
self.dropout2 = nn.Dropout(p=drop_prob)
|
241 |
+
|
242 |
+
def forward(self, x, self_attention_mask):
|
243 |
+
residual_x = x.clone()
|
244 |
+
x = checkpoint(self.attention, x, self_attention_mask, preserve_rng_state=True, use_reentrant=False) # Gradient checkpointing
|
245 |
+
x = self.dropout1(x)
|
246 |
+
x = self.norm1(x + residual_x)
|
247 |
+
residual_x = x.clone()
|
248 |
+
x = checkpoint(self.ffn, x, preserve_rng_state=True, use_reentrant=False) # Gradient checkpointing
|
249 |
+
x = self.dropout2(x)
|
250 |
+
x = self.norm2(x + residual_x)
|
251 |
+
return x
|
252 |
+
|
253 |
+
# Sequential Encoder
|
254 |
+
class SequentialEncoder(nn.Sequential):
|
255 |
+
def forward(self, *inputs):
|
256 |
+
x, self_attention_mask = inputs
|
257 |
+
for module in self._modules.values():
|
258 |
+
x = module(x, self_attention_mask)
|
259 |
+
return x
|
260 |
+
|
261 |
+
# Encoder with Mixed Precision
|
262 |
+
class Encoder(nn.Module):
|
263 |
+
def __init__(self, d_model, ffn_hidden, num_heads, drop_prob, encoder_layer, max_sequence_length, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN):
|
264 |
+
super().__init__()
|
265 |
+
self.sentence_embedding = SentenceEmbedding(max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN)
|
266 |
+
self.layers = SequentialEncoder(*[EncoderLayer(d_model, ffn_hidden, num_heads, drop_prob) for _ in range(encoder_layer)])
|
267 |
+
|
268 |
+
def forward(self, x, self_attention_mask, start_token, end_token):
|
269 |
+
with autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu'): # Mixed precision
|
270 |
+
x = self.sentence_embedding(x, start_token, end_token)
|
271 |
+
x = self.layers(x, self_attention_mask)
|
272 |
+
return x
|
273 |
+
|
274 |
+
# Decoder Layer with Gradient Checkpointing
|
275 |
+
class DecoderLayer(nn.Module):
|
276 |
+
def __init__(self, d_model, ffn_hidden, num_heads, drop_prob):
|
277 |
+
super().__init__()
|
278 |
+
self.self_attention = MultiHeadAttention(d_model=d_model, num_heads=num_heads)
|
279 |
+
self.layer_norm1 = LayerNormalization(parameters_shape=[d_model])
|
280 |
+
self.dropout1 = nn.Dropout(p=drop_prob)
|
281 |
+
self.encoder_decoder_attention = MultiHeadCrossAttention(d_model=d_model, num_heads=num_heads)
|
282 |
+
self.layer_norm2 = LayerNormalization(parameters_shape=[d_model])
|
283 |
+
self.dropout2 = nn.Dropout(p=drop_prob)
|
284 |
+
self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=ffn_hidden, drop_prob=drop_prob)
|
285 |
+
self.layer_norm3 = LayerNormalization(parameters_shape=[d_model])
|
286 |
+
self.dropout3 = nn.Dropout(p=drop_prob)
|
287 |
+
|
288 |
+
def forward(self, x, y, self_attention_mask, cross_attention_mask):
|
289 |
+
_y = y.clone()
|
290 |
+
y = checkpoint(self.self_attention, y, self_attention_mask, preserve_rng_state=True, use_reentrant=False) # Gradient checkpointing
|
291 |
+
y = self.dropout1(y)
|
292 |
+
y = self.layer_norm1(y + _y)
|
293 |
+
_y = y.clone()
|
294 |
+
y = checkpoint(self.encoder_decoder_attention, x, y, cross_attention_mask, preserve_rng_state=True, use_reentrant=False) # Gradient checkpointing
|
295 |
+
y = self.dropout2(y)
|
296 |
+
y = self.layer_norm2(y + _y)
|
297 |
+
_y = y.clone()
|
298 |
+
y = checkpoint(self.ffn, y, preserve_rng_state=True, use_reentrant=False) # Gradient checkpointing
|
299 |
+
y = self.dropout3(y)
|
300 |
+
y = self.layer_norm3(y + _y)
|
301 |
+
return y
|
302 |
+
|
303 |
+
# Sequential Decoder
|
304 |
+
class SequentialDecoder(nn.Sequential):
|
305 |
+
def forward(self, *inputs):
|
306 |
+
x, y, self_attention_mask, cross_attention_mask = inputs
|
307 |
+
for module in self._modules.values():
|
308 |
+
y = module(x, y, self_attention_mask, cross_attention_mask)
|
309 |
+
return y
|
310 |
+
|
311 |
+
# Decoder with Mixed Precision
|
312 |
+
class Decoder(nn.Module):
|
313 |
+
def __init__(self, d_model, ffn_hidden, num_heads, drop_prob, decoder_layer, max_sequence_length, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN):
|
314 |
+
super().__init__()
|
315 |
+
self.sentence_embedding = SentenceEmbedding(max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN)
|
316 |
+
self.layers = SequentialDecoder(*[DecoderLayer(d_model, ffn_hidden, num_heads, drop_prob) for _ in range(decoder_layer)])
|
317 |
+
|
318 |
+
def forward(self, x, y, self_attention_mask, cross_attention_mask, start_token, end_token):
|
319 |
+
with autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu'): # Mixed precision
|
320 |
+
y = self.sentence_embedding(y, start_token, end_token)
|
321 |
+
y = self.layers(x, y, self_attention_mask, cross_attention_mask)
|
322 |
+
return y
|
323 |
+
|
324 |
+
# Transformer with Mixed Precision and Gradient Checkpointing
|
325 |
+
class Transformer(nn.Module):
|
326 |
+
def __init__(self, d_model, ffn_hidden, num_heads, drop_prob, encoder_layer, decoder_layer, max_sequence_length, ne_vocab_size, english_to_index, nepali_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN):
|
327 |
+
super().__init__()
|
328 |
+
self.encoder = Encoder(d_model, ffn_hidden, num_heads, drop_prob, encoder_layer, max_sequence_length, english_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN)
|
329 |
+
self.decoder = Decoder(d_model, ffn_hidden, num_heads, drop_prob, decoder_layer, max_sequence_length, nepali_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN)
|
330 |
+
self.linear = nn.Linear(d_model, ne_vocab_size)
|
331 |
+
self.device = get_device()
|
332 |
+
|
333 |
+
def forward(self, x, y, encoder_self_attention_mask=None, decoder_self_attention_mask=None, decoder_cross_attention_mask=None, enc_start_token=False, enc_end_token=False, dec_start_token=False, dec_end_token=False):
|
334 |
+
with autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu'): # Mixed precision
|
335 |
+
x = self.encoder(x, encoder_self_attention_mask, enc_start_token, enc_end_token)
|
336 |
+
out = self.decoder(x, y, decoder_self_attention_mask, decoder_cross_attention_mask, dec_start_token, dec_end_token)
|
337 |
+
out = self.linear(out)
|
338 |
+
return out
|