Github_Navigator / github_companion.py
binuser007's picture
Upload 4 files
2722790 verified
import os
import openai
import tiktoken
import re
from gitingest import ingest
import json
import datetime
import logging
import sys
import time
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class GitHubCompanion:
def __init__(self, requesty_api_key=None):
"""Initialize the GitHub Companion chatbot"""
self.requesty_api_key = requesty_api_key or os.environ.get("REQUESTY_API_KEY")
if not self.requesty_api_key:
raise ValueError("Requesty API key is required")
# Log partial API key for debugging (first and last 5 chars)
api_key_preview = f"{self.requesty_api_key[:5]}...{self.requesty_api_key[-5:]}" if self.requesty_api_key else "None"
logger.info(f"Initializing with API key: {api_key_preview}")
# Updated client initialization with minimal parameters
try:
self.client = openai.OpenAI(
api_key=self.requesty_api_key,
base_url="https://router.requesty.ai/v1"
)
logger.info("OpenAI client initialized successfully")
except Exception as e:
logger.error(f"Error initializing OpenAI client: {e}")
raise
# self.model = "google/gemini-2.5-pro-exp-03-25"
self.model = "google/gemini-2.0-flash-thinking-exp-01-21"
self.conversation_history = []
self.repo_info = None
self.token_count = 0
# Gemini has a limit of 1048576 tokens, but we need to leave room for the conversation
self.max_tokens = 800000 # Further reduced to account for conversation history too
self.encoding = tiktoken.get_encoding("cl100k_base") # OpenAI's encoding
self.max_retries = 3
self.retry_delay = 20 # seconds
def count_tokens(self, text):
"""Count the number of tokens in a text"""
return len(self.encoding.encode(text))
def extract_repo_info(self, github_url):
"""Extract repository information using gitingest"""
print(f"Extracting information from {github_url}...")
try:
# Use gitingest to extract repo information
summary, tree, content = ingest(github_url)
# Check token counts for each component
summary_tokens = self.count_tokens(summary)
tree_tokens = self.count_tokens(tree)
content_tokens = self.count_tokens(content)
print(f"Token counts - Summary: {summary_tokens}, Tree: {tree_tokens}, Content: {content_tokens}")
# Calculate how much content we can include
header = f"SUMMARY:\n{summary}\n\nFILE STRUCTURE:\n{tree}\n\nCONTENT:\n"
header_tokens = self.count_tokens(header)
# Reserve more space for conversation
conversation_buffer = 100000 # Reserve 100K tokens for conversation
max_content_tokens = self.max_tokens - header_tokens - conversation_buffer
# Truncate content if needed
if content_tokens > max_content_tokens:
print(f"Warning: Content exceeds available token space. Truncating from {content_tokens} to {max_content_tokens} tokens.")
content_token_list = self.encoding.encode(content)
truncated_content = self.encoding.decode(content_token_list[:max_content_tokens])
content = truncated_content
# Combine all the information
repo_info = f"SUMMARY:\n{summary}\n\nFILE STRUCTURE:\n{tree}\n\nCONTENT:\n{content}"
# Final token count check
token_count = self.count_tokens(repo_info)
print(f"Repository information extracted. Token count: {token_count}")
# Safety check
if token_count > self.max_tokens:
print(f"Warning: Repository information still exceeds the token limit. Performing additional truncation.")
repo_info_tokens = self.encoding.encode(repo_info)
repo_info = self.encoding.decode(repo_info_tokens[:self.max_tokens - conversation_buffer])
token_count = self.count_tokens(repo_info)
print(f"Final token count after truncation: {token_count}")
self.repo_info = repo_info
self.token_count = token_count
return True
except Exception as e:
print(f"Error extracting repository information: {e}")
return False
def add_to_conversation(self, role, content):
"""Add a message to the conversation history"""
self.conversation_history.append({"role": role, "content": content})
def create_system_prompt(self):
"""Create the system prompt with repository information"""
current_date = datetime.datetime.now().strftime("%Y-%m-%d")
# Calculate tokens for the system prompt
base_prompt = (
f"You are GitHub Navigator, an AI assistant specialized in helping users with GitHub repositories. "
f"Today is {current_date}. "
f"You have been provided with information about a GitHub repository. "
f"Use this information to help the user understand and work with this repository. "
f"Be concise, accurate, and helpful. If asked questions about the repository content, "
f"refer to the provided information to give accurate answers."
)
base_prompt_tokens = self.count_tokens(base_prompt)
repo_info_tokens = self.count_tokens(self.repo_info)
print(f"System prompt base tokens: {base_prompt_tokens}, Repo info tokens: {repo_info_tokens}")
# Check if total tokens would be too large
total_tokens = base_prompt_tokens + repo_info_tokens
if total_tokens > 1000000: # Close to Gemini's limit
print(f"Warning: System prompt would be too large ({total_tokens} tokens). Trimming repository information.")
# Extract the important parts
parts = self.repo_info.split("\n\n")
if len(parts) >= 3: # Should have SUMMARY, FILE STRUCTURE, and CONTENT
summary = parts[0]
file_structure = parts[1]
# Calculate how much content we can include
max_content_tokens = 950000 - self.count_tokens(base_prompt) - self.count_tokens(summary) - self.count_tokens(file_structure) - 100
content_parts = self.repo_info.split("CONTENT:\n")
if len(content_parts) > 1:
content = content_parts[1]
content_tokens = self.count_tokens(content)
if content_tokens > max_content_tokens:
content_token_list = self.encoding.encode(content)
truncated_content = self.encoding.decode(content_token_list[:max_content_tokens])
trimmed_repo_info = f"{summary}\n\n{file_structure}\n\nCONTENT:\n{truncated_content}"
else:
trimmed_repo_info = self.repo_info
else:
trimmed_repo_info = f"{summary}\n\n{file_structure}\n\nCONTENT: [Content too large to include]"
else:
# Just truncate if we can't parse the structure
repo_info_tokens = self.encoding.encode(self.repo_info)
max_tokens = 950000 - self.count_tokens(base_prompt) - 100
trimmed_repo_info = self.encoding.decode(repo_info_tokens[:max_tokens])
# Final check
final_system_prompt = f"{base_prompt}\n\n{trimmed_repo_info}"
print(f"Final system prompt tokens: {self.count_tokens(final_system_prompt)}")
return final_system_prompt
# If not too large, return the full system prompt
return f"{base_prompt}\n\n{self.repo_info}"
def chat(self, user_message):
"""Process user message and generate a response"""
if not self.repo_info:
# Check if this is a GitHub URL
github_url_pattern = r'https?://github\.com/[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+'
match = re.search(github_url_pattern, user_message)
if match:
github_url = match.group(0)
success = self.extract_repo_info(github_url)
if success:
self.add_to_conversation("system", self.create_system_prompt())
self.add_to_conversation("user", f"I want to work with the repository at {github_url}. Please help me understand it.")
return self.generate_response()
else:
return "I had trouble extracting information from that repository. Please check the URL and try again."
else:
return "Please provide a valid GitHub repository URL to get started."
# Add user message to conversation history
self.add_to_conversation("user", user_message)
# Generate response
return self.generate_response()
def generate_response(self):
"""Generate a response using the Requesty API with retry logic"""
retry_count = 0
while retry_count < self.max_retries:
try:
# Create messages array for the API call
messages = []
# Add system message if it exists
system_messages = [msg for msg in self.conversation_history if msg["role"] == "system"]
if system_messages:
messages.append(system_messages[-1]) # Use the most recent system message
# Add user and assistant messages
for msg in self.conversation_history:
if msg["role"] in ["user", "assistant"]:
messages.append(msg)
# Make API call
response = self.client.chat.completions.create(
model=self.model,
messages=messages
)
# Extract response content
assistant_response = response.choices[0].message.content
# Add assistant response to conversation history
self.add_to_conversation("assistant", assistant_response)
return assistant_response
except openai.RateLimitError as e:
retry_count += 1
wait_time = self.retry_delay * retry_count
error_msg = f"Rate limit exceeded. Retrying in {wait_time} seconds... (Attempt {retry_count}/{self.max_retries})"
print(error_msg)
if retry_count < self.max_retries:
time.sleep(wait_time)
else:
return f"I'm currently experiencing high demand. Please try again later. Error: {e}"
except openai.APIError as e:
error_msg = f"Requesty API error: {e}"
print(error_msg)
# Check for token limit error
if "input token count" in str(e) and "exceeds the maximum" in str(e):
return "The repository is too large to process in one request. Please try a smaller repository or ask specific questions about particular parts of the codebase."
return error_msg
except Exception as e:
error_msg = f"Unexpected error: {e}"
print(error_msg)
return error_msg
def save_conversation(self, filename="conversation.json"):
"""Save the current conversation to a file"""
try:
with open(filename, 'w') as f:
json.dump(self.conversation_history, f, indent=2)
print(f"Conversation saved to {filename}")
except Exception as e:
print(f"Error saving conversation: {e}")
def load_conversation(self, filename="conversation.json"):
"""Load a conversation from a file"""
try:
with open(filename, 'r') as f:
self.conversation_history = json.load(f)
print(f"Conversation loaded from {filename}")
except FileNotFoundError:
print(f"File {filename} not found.")
except json.JSONDecodeError:
print(f"Error decoding JSON from {filename}.")
except Exception as e:
print(f"Error loading conversation: {e}")
# Command-line interface
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="GitHub Navigator Chatbot")
parser.add_argument("--api-key", help="Requesty API Key (or set REQUESTY_API_KEY environment variable)")
parser.add_argument("--load", help="Load conversation from file")
args = parser.parse_args()
try:
# Check for API key in command line args first, then environment
api_key = args.api_key
if not api_key:
# Get from environment with proper logging
api_key = os.environ.get("REQUESTY_API_KEY")
if api_key:
logger.info(f"Using API key from environment: {api_key[:5]}...{api_key[-5:]}")
else:
print("Error: Requesty API key not configured. Please provide an API key.")
print("Usage: python github_companion.py --api-key YOUR_API_KEY")
print(" or set the REQUESTY_API_KEY environment variable")
sys.exit(1)
# Initialize the companion with the API key
companion = GitHubCompanion(requesty_api_key=api_key)
if args.load:
companion.load_conversation(args.load)
print("GitHub Companion Bot - Your AI assistant for GitHub repositories")
print("Enter a GitHub repository URL to begin, or type 'exit' to quit")
while True:
try:
user_input = input("\nYou: ")
if user_input.lower() in ["exit", "quit", "bye"]:
print("Saving conversation...")
companion.save_conversation()
print("Goodbye!")
break
response = companion.chat(user_input)
print(f"\nGitHub Companion: {response}")
except KeyboardInterrupt:
print("\nSaving conversation and exiting...")
companion.save_conversation()
print("Goodbye!")
break
except Exception as e:
print(f"Error processing input: {e}")
except Exception as e:
logger.error(f"Error initializing GitHub Companion: {e}")
print(f"Error initializing GitHub Companion: {e}")
print("Please check your dependencies and API key configuration.")
sys.exit(1)