Spaces:
Sleeping
Sleeping
Commit
·
41b1069
1
Parent(s):
4004c75
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,119 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset, Audio
|
2 |
+
from transformers import AutoProcessor
|
3 |
+
import torch
|
4 |
+
from dataclasses import dataclass, field
|
5 |
+
from typing import Any, Dict, List, Optional, Union
|
6 |
+
import evaluate
|
7 |
|
8 |
+
|
9 |
+
ds="PolyAI/minds14"
|
10 |
+
# ds = "RaysDipesh/obama-voice-samples-283"
|
11 |
+
minds = load_dataset(ds, name="en-US", split="train[:100]")
|
12 |
+
minds = minds.train_test_split(test_size=0.2)
|
13 |
+
minds
|
14 |
+
|
15 |
+
minds = minds.remove_columns(["english_transcription", "intent_class", "lang_id"])
|
16 |
+
|
17 |
+
processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base")
|
18 |
+
|
19 |
+
minds = minds.cast_column("audio", Audio(sampling_rate=16_000))
|
20 |
+
minds["train"][0]
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
def prepare_dataset(batch):
|
27 |
+
audio = batch["audio"]
|
28 |
+
batch = processor(audio["array"], sampling_rate=audio["sampling_rate"], text=batch["transcription"])
|
29 |
+
batch["input_length"] = len(batch["input_values"][0])
|
30 |
+
return batch
|
31 |
+
|
32 |
+
def uppercase(example):
|
33 |
+
return {"transcription": example["transcription"].upper()}
|
34 |
+
|
35 |
+
@dataclass
|
36 |
+
class DataCollatorCTCWithPadding:
|
37 |
+
processor: AutoProcessor
|
38 |
+
padding: Union[bool, str] = "longest"
|
39 |
+
|
40 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
41 |
+
# split inputs and labels since they have to be of different lengths and need
|
42 |
+
# different padding methods
|
43 |
+
input_features = [{"input_values": feature["input_values"][0]} for feature in features]
|
44 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
45 |
+
|
46 |
+
batch = self.processor.pad(input_features, padding=self.padding, return_tensors="pt")
|
47 |
+
|
48 |
+
labels_batch = self.processor.pad(labels=label_features, padding=self.padding, return_tensors="pt")
|
49 |
+
# replace padding with -100 to ignore loss correctly
|
50 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
51 |
+
batch["labels"] = labels
|
52 |
+
return batch
|
53 |
+
|
54 |
+
|
55 |
+
minds = minds.map(uppercase)
|
56 |
+
encoded_minds = minds.map(prepare_dataset, remove_columns=minds.column_names["train"], num_proc=4)
|
57 |
+
|
58 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor, padding="longest")
|
59 |
+
|
60 |
+
|
61 |
+
wer = evaluate.load("wer")
|
62 |
+
|
63 |
+
import numpy as np
|
64 |
+
|
65 |
+
|
66 |
+
def compute_metrics(pred):
|
67 |
+
pred_logits = pred.predictions
|
68 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
69 |
+
|
70 |
+
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id
|
71 |
+
|
72 |
+
pred_str = processor.batch_decode(pred_ids)
|
73 |
+
label_str = processor.batch_decode(pred.label_ids, group_tokens=False)
|
74 |
+
|
75 |
+
wer = wer.compute(predictions=pred_str, references=label_str)
|
76 |
+
|
77 |
+
return {"wer": wer}
|
78 |
+
|
79 |
+
from transformers import AutoModelForCTC, TrainingArguments, Trainer
|
80 |
+
|
81 |
+
model = AutoModelForCTC.from_pretrained(
|
82 |
+
"facebook/wav2vec2-base",
|
83 |
+
ctc_loss_reduction="mean",
|
84 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
85 |
+
)
|
86 |
+
|
87 |
+
|
88 |
+
training_args = TrainingArguments(
|
89 |
+
output_dir="my_awesome_asr_mind_model",
|
90 |
+
per_device_train_batch_size=8,
|
91 |
+
gradient_accumulation_steps=2,
|
92 |
+
learning_rate=1e-5,
|
93 |
+
warmup_steps=500,
|
94 |
+
max_steps=2000,
|
95 |
+
gradient_checkpointing=True,
|
96 |
+
fp16=True,
|
97 |
+
group_by_length=True,
|
98 |
+
evaluation_strategy="steps",
|
99 |
+
per_device_eval_batch_size=8,
|
100 |
+
save_steps=1000,
|
101 |
+
eval_steps=1000,
|
102 |
+
logging_steps=25,
|
103 |
+
load_best_model_at_end=True,
|
104 |
+
metric_for_best_model="wer",
|
105 |
+
greater_is_better=False,
|
106 |
+
push_to_hub=True,
|
107 |
+
)
|
108 |
+
|
109 |
+
trainer = Trainer(
|
110 |
+
model=model,
|
111 |
+
args=training_args,
|
112 |
+
train_dataset=encoded_minds["train"],
|
113 |
+
eval_dataset=encoded_minds["test"],
|
114 |
+
tokenizer=processor,
|
115 |
+
data_collator=data_collator,
|
116 |
+
compute_metrics=compute_metrics,
|
117 |
+
)
|
118 |
+
|
119 |
+
trainer.train()
|