Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torchaudio
|
3 |
+
from transformers import pipeline
|
4 |
+
import torch
|
5 |
+
from datasets import load_dataset
|
6 |
+
|
7 |
+
# Modèle 1 : Transcription audio Wolof -> texte Wolof
|
8 |
+
pipe_wolof = pipeline(
|
9 |
+
task="automatic-speech-recognition",
|
10 |
+
model="bilalfaye/wav2vec2-large-mms-1b-wolof",
|
11 |
+
processor="bilalfaye/wav2vec2-large-mms-1b-wolof",
|
12 |
+
device="cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
)
|
14 |
+
|
15 |
+
# Fonction 1 : Transcription audio Wolof -> texte Wolof
|
16 |
+
def transcribe_audio_wolof(audio):
|
17 |
+
# Charger l'audio avec torchaudio
|
18 |
+
waveform, sample_rate = torchaudio.load(audio)
|
19 |
+
|
20 |
+
# Convertir stéréo en mono
|
21 |
+
if waveform.shape[0] > 1:
|
22 |
+
mono_audio = waveform.mean(dim=0, keepdim=True)
|
23 |
+
else:
|
24 |
+
mono_audio = waveform
|
25 |
+
|
26 |
+
# Rééchantillonner à 16 kHz si nécessaire
|
27 |
+
if sample_rate != 16000:
|
28 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
29 |
+
mono_audio = resampler(mono_audio)
|
30 |
+
sample_rate = 16000
|
31 |
+
|
32 |
+
# Convertir en tableau numpy
|
33 |
+
mono_audio = mono_audio.squeeze(0).numpy()
|
34 |
+
|
35 |
+
# Transcrire l'audio
|
36 |
+
result = pipe_wolof({"array": mono_audio, "sampling_rate": sample_rate})
|
37 |
+
return result['text']
|
38 |
+
|
39 |
+
# Modèle 2 : Texte Wolof -> audio Wolof
|
40 |
+
synthesiser_wolof = pipeline("text-to-speech", "bilalfaye/speecht5_tts-wolof")
|
41 |
+
|
42 |
+
# Charger les embeddings pour les voix masculine et féminine
|
43 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
44 |
+
speaker_embedding_male = torch.tensor(embeddings_dataset[0]["xvector"]).unsqueeze(0)
|
45 |
+
speaker_embedding_female = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
# Fonction 2 : Texte Wolof -> audio Wolof
|
50 |
+
def text_to_speech_wolof(text, voice_type):
|
51 |
+
embedding = speaker_embedding_male if voice_type == "Male" else speaker_embedding_female
|
52 |
+
speech = synthesiser_wolof(text, forward_params={"speaker_embeddings": embedding})
|
53 |
+
return speech["sampling_rate"], speech["audio"]
|
54 |
+
|
55 |
+
# Interface Gradio
|
56 |
+
with gr.Blocks() as app:
|
57 |
+
with gr.Tab("Transcription Audio -> Texte"):
|
58 |
+
gr.Markdown("### Transcription audio Wolof vers texte")
|
59 |
+
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Enregistrer ou importer un fichier audio")
|
60 |
+
transcription_output = gr.Textbox(label="Texte transcrit")
|
61 |
+
transcribe_button = gr.Button("Transcrire")
|
62 |
+
transcribe_button.click(transcribe_audio_wolof, inputs=audio_input, outputs=transcription_output)
|
63 |
+
|
64 |
+
with gr.Tab("Texte -> Synthèse Vocale"):
|
65 |
+
gr.Markdown("### Conversion de texte Wolof en audio")
|
66 |
+
text_input = gr.Textbox(label="Entrez du texte en Wolof")
|
67 |
+
voice_selector = gr.Radio(["Male", "Female"], label="Type de voix", value="Male")
|
68 |
+
audio_output = gr.Audio(label="Synthèse vocale")
|
69 |
+
synthesize_button = gr.Button("Synthétiser")
|
70 |
+
synthesize_button.click(text_to_speech_wolof, inputs=[text_input, voice_selector], outputs=audio_output)
|
71 |
+
|
72 |
+
# Lancer l'application
|
73 |
+
app.launch(debug=True, share=True)
|