import transformers import torch import tokenizers import streamlit as st @st.cache(hash_funcs={tokenizers.Tokenizer: lambda _: None}, suppress_st_warning=True) def get_model(model_name, model_path): tokenizer = transformers.GPT2Tokenizer.from_pretrained(model_name) model = transformers.GPT2LMHeadModel.from_pretrained(model_name) model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) model.eval() return model, tokenizer @st.cache(hash_funcs={tokenizers.Tokenizer: lambda _: None}, suppress_st_warning=True) def predict(text, model, tokenizer, n_beams=5, temperature=2.5, top_p=0.8, max_length=300): input_ids = tokenizer.encode(text, return_tensors="pt") with torch.no_grad(): out = model.generate(input_ids, do_sample=True, num_beams=n_beams, temperature=temperature, top_p=top_p, max_length=max_length, ) return list(map(tokenizer.decode, out))[0] model, tokenizer = get_model('sberbank-ai/rugpt3medium_based_on_gpt2', 'korzh-medium_30epochs_1bs.bin') st.title("NeuroKorzh") st.markdown("", unsafe_allow_html=True) st.markdown("\n") text = st.text_area(label='Starting point for text generation', height=200) button = st.button('Go') if button: try: result = predict(text, model, tokenizer) st.subheader('Max Korzh:') st.write(result) except Exception: st.error("Ooooops, something went wrong. Try again please and report to me, tg: @vladyur")