Spaces:
Runtime error
Runtime error
import transformers | |
import torch | |
import tokenizers | |
import streamlit as st | |
def get_model(model_name, model_path): | |
tokenizer = transformers.GPT2Tokenizer.from_pretrained(model_name) | |
model = transformers.GPT2LMHeadModel.from_pretrained(model_name) | |
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) | |
model.eval() | |
return model, tokenizer | |
def predict(text, model, tokenizer, n_beams=5, temperature=2.5, top_p=0.8, max_length=300): | |
input_ids = tokenizer.encode(text, return_tensors="pt") | |
with torch.no_grad(): | |
out = model.generate(input_ids, | |
do_sample=True, | |
num_beams=n_beams, | |
temperature=temperature, | |
top_p=top_p, | |
max_length=max_length, | |
) | |
return list(map(tokenizer.decode, out))[0] | |
model, tokenizer = get_model('sberbank-ai/rugpt3medium_based_on_gpt2', 'korzh-medium_30epochs_1bs.bin') | |
st.title("NeuroKorzh") | |
st.markdown("<img width=200px src='https://avatars.yandex.net/get-music-content/2399641/5d26d7e5.p.975699/m1000x1000'>", | |
unsafe_allow_html=True) | |
st.markdown("\n") | |
text = st.text_area(label='Starting point for text generation', height=200) | |
button = st.button('Go') | |
if button: | |
try: | |
result = predict(text, model, tokenizer) | |
st.subheader('Max Korzh:') | |
st.write(result) | |
except Exception: | |
st.error("Ooooops, something went wrong. Try again please and report to me, tg: @vladyur") | |