Spaces:
Runtime error
Runtime error
Commit
·
e5fd599
1
Parent(s):
a1084bc
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,56 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from peft import PeftModel
|
|
|
|
|
|
|
| 3 |
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-13b-hf")
|
| 6 |
model = LlamaForCausalLM.from_pretrained(
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
| 11 |
)
|
| 12 |
model = PeftModel.from_pretrained(
|
| 13 |
-
model, "
|
| 14 |
-
torch_dtype=torch.float16
|
|
|
|
| 15 |
)
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
### Response:"""
|
| 28 |
-
else:
|
| 29 |
-
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. Answer step by step.
|
| 30 |
|
|
|
|
| 31 |
### Instruction:
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
### Response:"""
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
num_beams=4,
|
| 40 |
)
|
| 41 |
|
| 42 |
-
def evaluate(instruction, input=None):
|
| 43 |
-
prompt = generate_prompt(instruction, input)
|
| 44 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
| 45 |
-
input_ids = inputs["input_ids"].cuda()
|
| 46 |
-
generation_output = model.generate(
|
| 47 |
-
input_ids=input_ids,
|
| 48 |
-
generation_config=generation_config,
|
| 49 |
-
return_dict_in_generate=True,
|
| 50 |
-
output_scores=True,
|
| 51 |
-
max_new_tokens=256
|
| 52 |
-
)
|
| 53 |
-
for s in generation_output.sequences:
|
| 54 |
-
output = tokenizer.decode(s)
|
| 55 |
-
print("Response:", output.split("### Response:")[1].strip())
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Python file to serve as the frontend"""
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from streamlit_chat import message
|
| 4 |
+
|
| 5 |
+
from langchain.chains import ConversationChain, LLMChain
|
| 6 |
+
from langchain import PromptTemplate
|
| 7 |
+
from langchain.llms.base import LLM
|
| 8 |
+
from langchain.memory import ConversationBufferWindowMemory
|
| 9 |
+
from typing import Optional, List, Mapping, Any
|
| 10 |
+
|
| 11 |
import torch
|
| 12 |
from peft import PeftModel
|
| 13 |
+
import transformers
|
| 14 |
+
|
| 15 |
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
|
| 16 |
+
from transformers import BitsAndBytesConfig
|
| 17 |
+
|
| 18 |
+
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
quantization_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True)
|
| 23 |
|
|
|
|
| 24 |
model = LlamaForCausalLM.from_pretrained(
|
| 25 |
+
"decapoda-research/llama-7b-hf",
|
| 26 |
+
# load_in_8bit=True,
|
| 27 |
+
# torch_dtype=torch.float16,
|
| 28 |
+
device_map="auto",
|
| 29 |
+
# device_map={"":"cpu"},
|
| 30 |
+
max_memory={"cpu":"15GiB"},
|
| 31 |
+
quantization_config=quantization_config
|
| 32 |
)
|
| 33 |
model = PeftModel.from_pretrained(
|
| 34 |
+
model, "tloen/alpaca-lora-7b",
|
| 35 |
+
# torch_dtype=torch.float16,
|
| 36 |
+
device_map={"":"cpu"},
|
| 37 |
)
|
| 38 |
|
| 39 |
+
device = "cpu"
|
| 40 |
+
print("model device :", model.device, flush=True)
|
| 41 |
+
# model.to(device)
|
| 42 |
+
model.eval()
|
| 43 |
|
| 44 |
+
def evaluate_raw_prompt(
|
| 45 |
+
prompt:str,
|
| 46 |
+
temperature=0.1,
|
| 47 |
+
top_p=0.75,
|
| 48 |
+
top_k=40,
|
| 49 |
+
num_beams=4,
|
| 50 |
+
**kwargs,
|
| 51 |
+
):
|
| 52 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 53 |
+
input_ids = inputs["input_ids"].to(device)
|
| 54 |
+
generation_config = GenerationConfig(
|
| 55 |
+
temperature=temperature,
|
| 56 |
+
top_p=top_p,
|
| 57 |
+
top_k=top_k,
|
| 58 |
+
num_beams=num_beams,
|
| 59 |
+
**kwargs,
|
| 60 |
+
)
|
| 61 |
+
with torch.no_grad():
|
| 62 |
+
generation_output = model.generate(
|
| 63 |
+
input_ids=input_ids,
|
| 64 |
+
generation_config=generation_config,
|
| 65 |
+
return_dict_in_generate=True,
|
| 66 |
+
output_scores=True,
|
| 67 |
+
max_new_tokens=256,
|
| 68 |
+
)
|
| 69 |
+
s = generation_output.sequences[0]
|
| 70 |
+
output = tokenizer.decode(s)
|
| 71 |
+
# return output
|
| 72 |
+
return output.split("### Response:")[1].strip()
|
| 73 |
|
| 74 |
+
class AlpacaLLM(LLM):
|
| 75 |
+
temperature: float
|
| 76 |
+
top_p: float
|
| 77 |
+
top_k: int
|
| 78 |
+
num_beams: int
|
| 79 |
+
@property
|
| 80 |
+
def _llm_type(self) -> str:
|
| 81 |
+
return "custom"
|
| 82 |
+
|
| 83 |
+
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
| 84 |
+
if stop is not None:
|
| 85 |
+
raise ValueError("stop kwargs are not permitted.")
|
| 86 |
+
answer = evaluate_raw_prompt(prompt,
|
| 87 |
+
top_p= self.top_p,
|
| 88 |
+
top_k= self.top_k,
|
| 89 |
+
num_beams= self.num_beams,
|
| 90 |
+
temperature= self.temperature
|
| 91 |
+
)
|
| 92 |
+
return answer
|
| 93 |
+
|
| 94 |
+
@property
|
| 95 |
+
def _identifying_params(self) -> Mapping[str, Any]:
|
| 96 |
+
"""Get the identifying parameters."""
|
| 97 |
+
return {
|
| 98 |
+
"top_p": self.top_p,
|
| 99 |
+
"top_k": self.top_k,
|
| 100 |
+
"num_beams": self.num_beams,
|
| 101 |
+
"temperature": self.temperature
|
| 102 |
+
}
|
| 103 |
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
+
template = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
| 106 |
### Instruction:
|
| 107 |
+
You are a chatbot, you should answer my last question very briefly. You are consistent and non repetitive.
|
| 108 |
+
### Chat:
|
| 109 |
+
{history}
|
| 110 |
+
Human: {human_input}
|
| 111 |
### Response:"""
|
| 112 |
|
| 113 |
+
prompt = PromptTemplate(
|
| 114 |
+
input_variables=["history","human_input"],
|
| 115 |
+
template=template,
|
|
|
|
| 116 |
)
|
| 117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
+
def load_chain():
|
| 120 |
+
"""Logic for loading the chain you want to use should go here."""
|
| 121 |
+
llm = AlpacaLLM(top_p=0.75, top_k=40, num_beams=4, temperature=0.1)
|
| 122 |
+
# chain = ConversationChain(llm=llm)
|
| 123 |
+
chain = LLMChain(llm=llm, prompt=prompt, memory=ConversationBufferWindowMemory(k=2))
|
| 124 |
+
return chain
|
| 125 |
+
|
| 126 |
+
chain = load_chain()
|
| 127 |
+
|
| 128 |
+
# From here down is all the StreamLit UI.
|
| 129 |
+
st.set_page_config(page_title="LangChain Demo", page_icon=":robot:")
|
| 130 |
+
st.header("LangChain Demo")
|
| 131 |
+
|
| 132 |
+
if "generated" not in st.session_state:
|
| 133 |
+
st.session_state["generated"] = []
|
| 134 |
+
|
| 135 |
+
if "past" not in st.session_state:
|
| 136 |
+
st.session_state["past"] = []
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def get_text():
|
| 140 |
+
input_text = st.text_input("Human: ", "Hello, how are you?", key="input")
|
| 141 |
+
return input_text
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
user_input = get_text()
|
| 145 |
+
|
| 146 |
+
if user_input:
|
| 147 |
+
output = chain.predict(human_input=user_input)
|
| 148 |
+
|
| 149 |
+
st.session_state.past.append(user_input)
|
| 150 |
+
st.session_state.generated.append(output)
|
| 151 |
+
|
| 152 |
+
if st.session_state["generated"]:
|
| 153 |
+
|
| 154 |
+
for i in range(len(st.session_state["generated"]) - 1, -1, -1):
|
| 155 |
+
message(st.session_state["generated"][i], key=str(i))
|
| 156 |
+
message(st.session_state["past"][i], is_user=True, key=str(i) + "_user")
|