bhaskartripathi commited on
Commit
88dc7bb
·
1 Parent(s): 6dcf633

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -68
app.py CHANGED
@@ -24,10 +24,6 @@ def pdf_to_text(path, start_page=1, end_page=None):
24
 
25
  if end_page is None:
26
  end_page = total_pages
27
- else:
28
- end_page = int(end_page)
29
-
30
- start_page = int(start_page)
31
 
32
  text_list = []
33
 
@@ -40,7 +36,6 @@ def pdf_to_text(path, start_page=1, end_page=None):
40
  return text_list
41
 
42
 
43
-
44
  def text_to_chunks(texts, word_length=150, start_page=1):
45
  text_toks = [t.split(' ') for t in texts]
46
  page_nums = []
@@ -96,40 +91,13 @@ class SemanticSearch:
96
 
97
 
98
 
99
- #def load_recommender(path, start_page=1):
100
- # global recommender
101
- # texts = pdf_to_text(path, start_page=start_page)
102
- # chunks = text_to_chunks(texts, start_page=start_page)
103
- # recommender.fit(chunks)
104
- # return 'Corpus Loaded.'
105
-
106
- # The modified function generates embeddings based on PDF file name and page number and checks if the embeddings file exists before loading or generating it.
107
- def load_recommender(path, start_page=1, end_page=None):
108
  global recommender
109
- pdf_file = os.path.basename(path)
110
- embeddings_file = f"{pdf_file}_{start_page}.npy"
111
-
112
- if os.path.isfile(embeddings_file):
113
- embeddings = np.load(embeddings_file)
114
- recommender.embeddings = embeddings
115
- recommender.fitted = True
116
- return "Embeddings loaded from file"
117
-
118
- if start_page:
119
- start_page = int(start_page)
120
- if end_page:
121
- end_page = int(end_page)
122
-
123
- texts = pdf_to_text(path, start_page=start_page, end_page=end_page)
124
  chunks = text_to_chunks(texts, start_page=start_page)
125
  recommender.fit(chunks)
126
- np.save(embeddings_file, recommender.embeddings)
127
  return 'Corpus Loaded.'
128
 
129
-
130
-
131
-
132
-
133
  def generate_text(openAI_key,prompt, engine="text-davinci-003"):
134
  openai.api_key = openAI_key
135
  completions = openai.Completion.create(
@@ -142,22 +110,6 @@ def generate_text(openAI_key,prompt, engine="text-davinci-003"):
142
  )
143
  message = completions.choices[0].text
144
  return message
145
-
146
- def generate_text2(openAI_key, prompt, engine="gpt-3.5-turbo-0301"):
147
- openai.api_key = openAI_key
148
- messages = [{'role': 'system', 'content': 'You are a helpful assistant.'},
149
- {'role': 'user', 'content': prompt}]
150
-
151
- completions = openai.ChatCompletion.create(
152
- model=engine,
153
- messages=messages,
154
- max_tokens=512,
155
- n=1,
156
- stop=None,
157
- temperature=0.7,
158
- )
159
- message = completions.choices[0].message['content']
160
- return message
161
 
162
  def generate_answer(question,openAI_key):
163
  topn_chunks = recommender(question)
@@ -180,58 +132,68 @@ def generate_answer(question,openAI_key):
180
  return answer
181
 
182
 
183
- def question_answer(url, file, question, openAI_key, start_page, end_page):
184
  if openAI_key.strip() == '':
185
- return '[ERROR]: Please enter your Open AI Key. Get your key here : https://platform.openai.com/account/api-keys'
186
- if url.strip() == '' and file == None:
187
- return '[ERROR]: Both URL and PDF is empty. Provide at least one.'
188
-
189
- if url.strip() != '' and file != None:
190
- return '[ERROR]: Both URL and PDF is provided. Please provide only one (either URL or PDF).'
 
191
 
192
  if url.strip() != '':
193
  glob_url = url
194
  download_pdf(glob_url, 'corpus.pdf')
195
- load_recommender('corpus.pdf', start_page=start_page, end_page=end_page)
196
 
197
  else:
198
  old_file_name = file.name
199
  file_name = file.name
200
  file_name = file_name[:-12] + file_name[-4:]
201
  os.rename(old_file_name, file_name)
202
- load_recommender(file_name, start_page=start_page, end_page=end_page)
203
 
204
  if question.strip() == '':
205
  return '[ERROR]: Question field is empty'
206
 
207
- return generate_answer(question, openAI_key)
 
 
 
208
 
209
 
210
  recommender = SemanticSearch()
211
 
212
  title = 'PDF GPT'
213
- description = """ What is PDF GPT ?
214
- 1. The problem is that Open AI has a 4K token limit and cannot take an entire PDF file as input. Additionally, it sometimes returns irrelevant responses due to poor embeddings. ChatGPT cannot directly talk to external data. The solution is PDF GPT, which allows you to chat with an uploaded PDF file using GPT functionalities. The application breaks the document into smaller chunks and generates embeddings using a powerful Deep Averaging Network Encoder. A semantic search is performed on your query, and the top relevant chunks are used to generate a response.
215
- 2. The returned response can even cite the page number in square brackets([]) where the information is located, adding credibility to the responses and helping to locate pertinent information quickly. The Responses are much better than the naive responses by Open AI."""
216
 
217
  with gr.Blocks() as demo:
218
 
219
  gr.Markdown(f'<center><h1>{title}</h1></center>')
220
  gr.Markdown(description)
 
221
  with gr.Row():
 
222
  with gr.Group():
223
  gr.Markdown(f'<p style="text-align:center">Get your Open AI API key <a href="https://platform.openai.com/account/api-keys">here</a></p>')
224
- openAI_key = gr.Textbox(label='Enter your OpenAI API key here')
225
  url = gr.Textbox(label='Enter PDF URL here')
226
  gr.Markdown("<center><h4>OR<h4></center>")
227
  file = gr.File(label='Upload your PDF/ Research Paper / Book here', file_types=['.pdf'])
228
  question = gr.Textbox(label='Enter your question here')
229
- start_page = gr.Number(label='Start on page (default: 1)', default=1, min_value=1)
230
- end_page = gr.Number(label='End on page (default: last page)', default=None, min_value=1, allow_none=True)
231
  btn = gr.Button(value='Submit')
232
  btn.style(full_width=True)
 
233
  with gr.Group():
234
  answer = gr.Textbox(label='The answer to your question is :')
235
- btn.click(question_answer, inputs=[url, file, question, openAI_key, start_page, end_page], outputs=[answer])
 
 
 
 
 
236
 
237
- demo.launch()
 
 
24
 
25
  if end_page is None:
26
  end_page = total_pages
 
 
 
 
27
 
28
  text_list = []
29
 
 
36
  return text_list
37
 
38
 
 
39
  def text_to_chunks(texts, word_length=150, start_page=1):
40
  text_toks = [t.split(' ') for t in texts]
41
  page_nums = []
 
91
 
92
 
93
 
94
+ def load_recommender(path, start_page=1):
 
 
 
 
 
 
 
 
95
  global recommender
96
+ texts = pdf_to_text(path, start_page=start_page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  chunks = text_to_chunks(texts, start_page=start_page)
98
  recommender.fit(chunks)
 
99
  return 'Corpus Loaded.'
100
 
 
 
 
 
101
  def generate_text(openAI_key,prompt, engine="text-davinci-003"):
102
  openai.api_key = openAI_key
103
  completions = openai.Completion.create(
 
110
  )
111
  message = completions.choices[0].text
112
  return message
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
 
114
  def generate_answer(question,openAI_key):
115
  topn_chunks = recommender(question)
 
132
  return answer
133
 
134
 
135
+ def question_answer(url, file, question, openAI_key, history=[]):
136
  if openAI_key.strip() == '':
137
+ return '[ERROR]: Please enter your Open AI Key. Get your key here: https://platform.openai.com/account/api-keys'
138
+
139
+ if url.strip() == '' and file is None:
140
+ return '[ERROR]: Both URL and PDF are empty. Provide at least one.'
141
+
142
+ if url.strip() != '' and file is not None:
143
+ return '[ERROR]: Both URL and PDF are provided. Please provide only one (either URL or PDF).'
144
 
145
  if url.strip() != '':
146
  glob_url = url
147
  download_pdf(glob_url, 'corpus.pdf')
148
+ load_recommender('corpus.pdf')
149
 
150
  else:
151
  old_file_name = file.name
152
  file_name = file.name
153
  file_name = file_name[:-12] + file_name[-4:]
154
  os.rename(old_file_name, file_name)
155
+ load_recommender(file_name)
156
 
157
  if question.strip() == '':
158
  return '[ERROR]: Question field is empty'
159
 
160
+ answer = generate_answer(question, openAI_key)
161
+ history.append({'question': question, 'answer': answer})
162
+ return answer
163
+
164
 
165
 
166
  recommender = SemanticSearch()
167
 
168
  title = 'PDF GPT'
169
+ description = """ PDF GPT allows you to chat with your PDF file using Universal Sentence Encoder and Open AI. It gives hallucination free response than other tools as the embeddings are better than OpenAI. The returned response can even cite the page number in square brackets([]) where the information is located, adding credibility to the responses and helping to locate pertinent information quickly."""
170
+ history = []
 
171
 
172
  with gr.Blocks() as demo:
173
 
174
  gr.Markdown(f'<center><h1>{title}</h1></center>')
175
  gr.Markdown(description)
176
+
177
  with gr.Row():
178
+
179
  with gr.Group():
180
  gr.Markdown(f'<p style="text-align:center">Get your Open AI API key <a href="https://platform.openai.com/account/api-keys">here</a></p>')
181
+ openAI_key=gr.Textbox(label='Enter your OpenAI API key here')
182
  url = gr.Textbox(label='Enter PDF URL here')
183
  gr.Markdown("<center><h4>OR<h4></center>")
184
  file = gr.File(label='Upload your PDF/ Research Paper / Book here', file_types=['.pdf'])
185
  question = gr.Textbox(label='Enter your question here')
 
 
186
  btn = gr.Button(value='Submit')
187
  btn.style(full_width=True)
188
+
189
  with gr.Group():
190
  answer = gr.Textbox(label='The answer to your question is :')
191
+ history_box = gr.Textbox(label='History of Questions and Answers', value='', type='output', lines=10)
192
+
193
+
194
+ #btn.click(question_answer, inputs=[url, file, question,openAI_key], outputs=[answer])
195
+ btn.click(question_answer, inputs=[url, file, question,openAI_key, history], outputs=[answer, history_box])
196
+
197
 
198
+ #openai.api_key = os.getenv('Your_Key_Here')
199
+ demo.launch()