Spaces:
Runtime error
Runtime error
File size: 3,817 Bytes
1e8edc1 faa00e9 1e8edc1 b160a8b b6c14b6 1e8edc1 faa00e9 1e8edc1 faa00e9 1e8edc1 faa00e9 1e8edc1 faa00e9 1e8edc1 faa00e9 1e8edc1 cf0d0cb 1e8edc1 efb89c8 3aae3ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import urllib.request
import fitz
import re
import numpy as np
import openai
import gradio as gr
import os
from sklearn.neighbors import NearestNeighbors
title = 'MediDiagnostix AI'
description = """MediDiagnostix AI allows you to upload medical reports for analysis. Just click a picture of your medical report or upload a pdf report, it will
extract, analyze and provide you the medical interpretations of the report, potential diagnoses, and recommended follow-up actions. Furthermore, you can save diagnosis for future reference"""
import pytesseract # Assuming Tesseract OCR is used for image processing
def analyze_reports(files, num_reports):
"""
Process and analyze the uploaded reports.
Args:
files (list): List of uploaded files (PDFs and images).
num_reports (int): Number of reports to analyze.
Returns:
str: Analysis results in a formatted text.
"""
# Check if the number of files matches num_reports
if len(files) != num_reports:
return "Number of uploaded files does not match the specified number of reports."
# Initialize a list to hold text from each report
report_texts = []
for file in files:
# Check file type and process accordingly
if file.name.endswith('.pdf'):
# Process PDF file
pdf_text = pdf_to_text(file.name)
report_texts.extend(pdf_text)
else:
# Process Image file
image_text = image_to_text(file)
report_texts.append(image_text)
# Combine texts from all reports
combined_text = ' '.join(report_texts)
# Analyze the combined text (Placeholder for actual analysis logic)
analysis_results = analyze_text(combined_text) # This function needs to be implemented
return analysis_results
def image_to_text(image_file):
"""
Extract text from an image file using OCR.
Args:
image_file (file): An image file.
Returns:
str: Extracted text from the image.
"""
try:
# Read the image file
image = Image.open(image_file)
# Extract text using OCR
extracted_text = pytesseract.image_to_string(image)
return extracted_text
except Exception as e:
return f"Error in text extraction from image: {e}"
def analyze_text(text):
"""
Analyze the extracted text and generate insights.
Args:
text (str): Combined text from all reports.
Returns:
str: Analysis results based on the text.
"""
# Placeholder for text analysis logic
# This could involve calling an AI model, processing the text, etc.
# Returning a dummy response for demonstration purposes
return "Analysis results based on the processed text."
with gr.Blocks(css="""#chatbot { font-size: 14px; min-height: 1200; }""") as demo:
gr.Markdown(f'<center><h3>{title}</h3></center>')
gr.Markdown(description)
with gr.Row():
with gr.Group():
gr.Markdown(f'<p style="text-align:center">Enter the number of reports to analyze</p>')
num_reports = gr.Number(label='Number of Reports', value=1)
with gr.Accordion("Upload Reports"):
file_upload = gr.File(label='Upload Reports (PDF/Image)', file_types=['.pdf', '.jpg', '.png'], interactive=True, type="file", allow_multiple=True)
analyze_button = gr.Button(value='Analyze Reports')
with gr.Group():
analysis_results = gr.Textbox(label='Analysis Results', placeholder="Results will appear here after analysis", lines=20)
analyze_button.click(
#func=analyze_reports, # This function needs to be defined to handle the report analysis.
inputs=[file_upload, num_reports],
outputs=[analysis_results],
)
demo.launch()
|