File size: 2,586 Bytes
0e7fccd
 
 
 
0dc6eb9
0e7fccd
 
 
 
 
16eefe3
0e7fccd
16eefe3
0e7fccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dc6eb9
0e7fccd
 
0dc6eb9
 
 
 
 
 
 
0e7fccd
 
 
0dc6eb9
dfdb820
0e7fccd
dfdb820
0e7fccd
 
16eefe3
 
0dc6eb9
16eefe3
0dc6eb9
dfdb820
16eefe3
 
dfdb820
 
16eefe3
dfdb820
16eefe3
dfdb820
0e7fccd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import requests
from bs4 import BeautifulSoup
import pandas as pd
import gradio as gr
import plotly.express as px

BASE_URL = "https://scale.com/leaderboard"

LEADERBOARDS = {
    "Coding": "/coding",
    "Adversarial Robustness": "/adversarial_robustness",
    "Instruction Following": "/instruction_following",
    "Math": "/math"
}

def scrape_leaderboard(leaderboard):
    url = BASE_URL + LEADERBOARDS[leaderboard]
    
    response = requests.get(url)
    soup = BeautifulSoup(response.content, 'html.parser')
    
    leaderboard_div = soup.find('div', class_='flex flex-col gap-4 sticky top-20')
    
    if not leaderboard_div:
        raise ValueError("Leaderboard div not found. The page structure might have changed.")
    
    table = leaderboard_div.find('table', class_='w-full caption-bottom text-sm')
    
    if not table:
        raise ValueError("Leaderboard table not found within the div.")
    
    data = []
    for row in table.find('tbody').find_all('tr'):
        cols = row.find_all('td')
        rank = cols[0].find('div', class_='flex').text.strip().split()[0]
        model = cols[0].find('a').text.strip()
        score = cols[1].text.strip()
        confidence = cols[2].text.strip()
        data.append([rank, model, score, confidence])
    
    df = pd.DataFrame(data, columns=['Rank', 'Model', 'Score', '95% Confidence'])
    df['Score'] = pd.to_numeric(df['Score'])  # Convert Score to numeric
    return df

def create_chart(df):
    fig = px.bar(df, x='Model', y='Score', title='Model Scores Comparison',
                 labels={'Score': 'Overall Score', 'Model': 'Model Name'},
                 color='Score', color_continuous_scale='viridis')
    fig.update_layout(xaxis_tickangle=-45, xaxis_title=None)
    return fig

def update_leaderboard(leaderboard):
    try:
        df = scrape_leaderboard(leaderboard)
        chart = create_chart(df)
        return chart, df.to_html(index=False)
    except Exception as e:
        return None, f"An error occurred: {str(e)}"

# Create Gradio interface
with gr.Blocks() as iface:
    gr.Markdown("# Scale AI Leaderboard Viewer")
    dropdown = gr.Dropdown(choices=list(LEADERBOARDS.keys()), label="Select Leaderboard", value="Coding")
    
    chart_output = gr.Plot()
    table_output = gr.HTML()
    
    def on_load():
        chart, html = update_leaderboard("Coding")
        return chart, html
    
    dropdown.change(update_leaderboard, inputs=[dropdown], outputs=[chart_output, table_output])
    
    iface.load(on_load, outputs=[chart_output, table_output])

# Launch the app
iface.launch()