File size: 2,001 Bytes
0e7fccd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import requests
from bs4 import BeautifulSoup
import pandas as pd
import gradio as gr
BASE_URL = "https://scale.com/leaderboard"
LEADERBOARDS = {
"Main Leaderboard": "",
"Adversarial Robustness": "/adversarial_robustness",
"Coding": "/coding",
"Instruction Following": "/instruction_following",
"Math": "/math",
"Spanish": "/spanish",
"Methodology": "/methodology"
}
def scrape_leaderboard(leaderboard):
url = BASE_URL + LEADERBOARDS[leaderboard]
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
leaderboard_div = soup.find('div', class_='flex flex-col gap-4 sticky top-20')
if not leaderboard_div:
raise ValueError("Leaderboard div not found. The page structure might have changed.")
table = leaderboard_div.find('table', class_='w-full caption-bottom text-sm')
if not table:
raise ValueError("Leaderboard table not found within the div.")
data = []
for row in table.find('tbody').find_all('tr'):
cols = row.find_all('td')
rank = cols[0].find('div', class_='flex').text.strip().split()[0]
model = cols[0].find('a').text.strip()
score = cols[1].text.strip()
confidence = cols[2].text.strip()
data.append([rank, model, score, confidence])
df = pd.DataFrame(data, columns=['Rank', 'Model', 'Score', '95% Confidence'])
return df
def update_leaderboard(leaderboard):
try:
df = scrape_leaderboard(leaderboard)
return df.to_html(index=False)
except Exception as e:
return f"An error occurred: {str(e)}"
# Create Gradio interface
iface = gr.Interface(
fn=update_leaderboard,
inputs=gr.Dropdown(choices=list(LEADERBOARDS.keys()), label="Select Leaderboard"),
outputs=gr.HTML(label="Leaderboard Data"),
title="Scale AI Leaderboard Viewer",
description="Select a leaderboard to view the latest data from Scale.com"
)
# Launch the app
iface.launch() |