Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import chromadb
|
2 |
from chromadb.config import Settings
|
3 |
from chromadb import Client
|
4 |
-
from transformers import AutoTokenizer, AutoModel, pipeline
|
5 |
import pandas as pd
|
6 |
import numpy as np
|
7 |
import streamlit as st
|
@@ -13,12 +13,11 @@ import torch
|
|
13 |
import faiss
|
14 |
from sentence_transformers import SentenceTransformer
|
15 |
import matplotlib.pyplot as plt
|
16 |
-
from
|
17 |
-
import
|
18 |
-
|
19 |
|
20 |
SPREADSHEET_ID = "1CsBub3Jlwyo7WHMQty6SDnBShIZMjl5XTVSoOKrxZhc"
|
21 |
-
RANGE_NAME = 'Sheet1!A1:
|
22 |
SERVICE_ACCOUNT_FILE = r"C:\Users\bhagy\AI\credentials.json"
|
23 |
|
24 |
|
@@ -49,21 +48,30 @@ except Exception:
|
|
49 |
collection = chroma_client.create_collection(collection_name)
|
50 |
|
51 |
def get_google_sheets_service():
|
52 |
-
|
53 |
SERVICE_ACCOUNT_FILE,
|
54 |
scopes=["https://www.googleapis.com/auth/spreadsheets"]
|
55 |
)
|
56 |
-
return
|
57 |
-
|
58 |
-
def update_google_sheet(
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
try:
|
63 |
-
|
64 |
-
values = [[str(response), str(sentiment)]]
|
65 |
-
body = {'values': values}
|
66 |
-
result = service.spreadsheets().values().update(
|
67 |
spreadsheetId=SPREADSHEET_ID,
|
68 |
range=RANGE_NAME,
|
69 |
valueInputOption="RAW",
|
@@ -74,38 +82,41 @@ def update_google_sheet(response, sentiment):
|
|
74 |
st.error(f"Failed to update Google Sheets: {e}")
|
75 |
|
76 |
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
huggingface_result = sentiment_pipeline(text)[0]
|
83 |
-
huggingface_label = huggingface_result['label']
|
84 |
-
huggingface_score = huggingface_result['score']
|
85 |
-
print("huggingface_score:", huggingface_score)
|
86 |
-
textblob_normalized_score = (textblob_polarity + 1) / 2
|
87 |
-
print("textblob_normalized_score:", textblob_normalized_score)
|
88 |
-
combined_score = (textblob_normalized_score + huggingface_score) / 2
|
89 |
-
print("combined_score:", combined_score)
|
90 |
-
# Determine final sentiment
|
91 |
-
if combined_score > 0.6:
|
92 |
-
return "Positive", combined_score
|
93 |
-
elif combined_score < 0.4:
|
94 |
-
return "Negative", combined_score
|
95 |
-
else:
|
96 |
-
return "Neutral", combined_score
|
97 |
-
|
98 |
|
99 |
-
def
|
100 |
-
|
101 |
-
sentiment = analysis.sentiment.polarity
|
102 |
-
if sentiment > 0:
|
103 |
-
return "Positive", sentiment
|
104 |
-
elif sentiment < 0:
|
105 |
-
return "Negative", sentiment
|
106 |
-
else:
|
107 |
-
return "Neutral", sentiment
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
|
111 |
def load_csv(file_path):
|
@@ -221,6 +232,68 @@ if "crm_history" not in st.session_state:
|
|
221 |
if "app_feedback" not in st.session_state:
|
222 |
st.session_state["app_feedback"] = []
|
223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
def add_to_sentiment_history(text, sentiment_label, sentiment_score, closest_objection, response):
|
226 |
st.session_state.sentiment_history.append({
|
@@ -299,7 +372,17 @@ def show_help():
|
|
299 |
- **Changelog**: We release regular updates to improve performance. Please refer to the changelog for new features and improvements.
|
300 |
- **How to Update**: If an update is available, follow the instructions in the settings tab to install the latest version.
|
301 |
""")
|
302 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
def process_real_time_audio():
|
305 |
recognizer = sr.Recognizer()
|
@@ -307,7 +390,7 @@ def process_real_time_audio():
|
|
307 |
|
308 |
st.write("Adjusting microphone for ambient noise... Please wait.")
|
309 |
with microphone as source:
|
310 |
-
recognizer.adjust_for_ambient_noise(source)
|
311 |
|
312 |
st.write("Listening for audio... Speak into the microphone.")
|
313 |
while True:
|
@@ -315,6 +398,8 @@ def process_real_time_audio():
|
|
315 |
with microphone as source:
|
316 |
audio = recognizer.listen(source, timeout=15, phrase_time_limit=20)
|
317 |
|
|
|
|
|
318 |
st.write("Transcribing audio...")
|
319 |
transcribed_text = recognizer.recognize_google(audio)
|
320 |
st.write(f"You said: {transcribed_text}")
|
@@ -324,7 +409,7 @@ def process_real_time_audio():
|
|
324 |
break
|
325 |
|
326 |
st.markdown("### **Sentiment Analysis**")
|
327 |
-
sentiment_label, sentiment_score =
|
328 |
st.write(f"Sentiment: {sentiment_label}")
|
329 |
st.write(f"Sentiment Score: {sentiment_score}")
|
330 |
|
@@ -345,20 +430,26 @@ def process_real_time_audio():
|
|
345 |
st.write(f"Objection: {closest_objection}")
|
346 |
st.write(f" Response: {response}")
|
347 |
|
348 |
-
update_google_sheet(
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
|
350 |
except sr.UnknownValueError:
|
351 |
st.warning("Could not understand the audio.")
|
352 |
except Exception as e:
|
353 |
st.error(f"Error: {e}")
|
354 |
break
|
355 |
-
|
356 |
def generate_sentiment_pie_chart(sentiment_history):
|
357 |
if not sentiment_history:
|
358 |
st.warning("No sentiment history available to generate a pie chart.")
|
359 |
return
|
360 |
|
361 |
-
|
362 |
sentiment_counts = {
|
363 |
"Positive": 0,
|
364 |
"Negative": 0,
|
@@ -366,13 +457,18 @@ def generate_sentiment_pie_chart(sentiment_history):
|
|
366 |
}
|
367 |
|
368 |
for entry in sentiment_history:
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
|
|
|
|
|
|
|
|
|
|
|
376 |
|
377 |
fig, ax = plt.subplots()
|
378 |
plt.figure(figsize=(6,6))
|
@@ -392,24 +488,18 @@ def generate_post_call_summary(sentiment_history, recommendations=[]):
|
|
392 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
393 |
combined_text = " ".join([item["Text"] for item in sentiment_history])
|
394 |
|
395 |
-
summary = summarizer(combined_text, max_length=100, min_length=30, do_sample=False)[0]["summary_text"]
|
396 |
scores = [item["Score"] for item in sentiment_history]
|
397 |
-
average_sentiment_score = sum(scores) / len(scores)
|
398 |
-
|
399 |
-
if average_sentiment_score > 0.05:
|
400 |
-
overall_sentiment = "Positive"
|
401 |
-
elif average_sentiment_score < -0.05:
|
402 |
-
overall_sentiment = "Negative"
|
403 |
-
else:
|
404 |
-
overall_sentiment = "Neutral"
|
405 |
|
406 |
st.markdown("## Summary of the Call")
|
|
|
|
|
407 |
st.write(summary)
|
408 |
|
409 |
st.markdown("### **Overall Sentiment for the Call**")
|
|
|
|
|
410 |
st.write(f"Overall Sentiment: {overall_sentiment}")
|
411 |
-
st.write(f"Average Sentiment Score: {average_sentiment_score:.2f}")
|
412 |
-
sentiment_scores = df["Score"].values
|
413 |
|
414 |
col1,col2=st.columns(2)
|
415 |
with col1:
|
@@ -528,8 +618,6 @@ def main():
|
|
528 |
else:
|
529 |
st.warning("No feedback submitted yet.")
|
530 |
|
531 |
-
feedback = st.radio("Was this helpful?", ["Yes", "No"])
|
532 |
-
st.button("Sumbit")
|
533 |
|
534 |
file_path = csv_file_path
|
535 |
data = load_csv(file_path)
|
|
|
1 |
import chromadb
|
2 |
from chromadb.config import Settings
|
3 |
from chromadb import Client
|
4 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification, pipeline
|
5 |
import pandas as pd
|
6 |
import numpy as np
|
7 |
import streamlit as st
|
|
|
13 |
import faiss
|
14 |
from sentence_transformers import SentenceTransformer
|
15 |
import matplotlib.pyplot as plt
|
16 |
+
from huggingface_hub import login
|
17 |
+
import os
|
|
|
18 |
|
19 |
SPREADSHEET_ID = "1CsBub3Jlwyo7WHMQty6SDnBShIZMjl5XTVSoOKrxZhc"
|
20 |
+
RANGE_NAME = 'Sheet1!A1:E'
|
21 |
SERVICE_ACCOUNT_FILE = r"C:\Users\bhagy\AI\credentials.json"
|
22 |
|
23 |
|
|
|
48 |
collection = chroma_client.create_collection(collection_name)
|
49 |
|
50 |
def get_google_sheets_service():
|
51 |
+
creds = Credentials.from_service_account_file(
|
52 |
SERVICE_ACCOUNT_FILE,
|
53 |
scopes=["https://www.googleapis.com/auth/spreadsheets"]
|
54 |
)
|
55 |
+
return creds
|
56 |
+
|
57 |
+
def update_google_sheet(transcribed_text, sentiment,objection, recommendations,overall_sentiment):
|
58 |
+
creds = get_google_sheets_service()
|
59 |
+
service = build('sheets', 'v4', credentials=creds)
|
60 |
+
sheet = service.spreadsheets()
|
61 |
+
values = [[
|
62 |
+
transcribed_text,
|
63 |
+
sentiment,
|
64 |
+
objection,
|
65 |
+
recommendations,
|
66 |
+
overall_sentiment
|
67 |
+
]]
|
68 |
+
body = {'values': values}
|
69 |
+
|
70 |
+
header=["transcribed_text", "sentiment","objection", "recommendations","overall_sentiment"]
|
71 |
+
all_values=[header]+values
|
72 |
+
body = {'values': values}
|
73 |
try:
|
74 |
+
result = sheet.values().append(
|
|
|
|
|
|
|
75 |
spreadsheetId=SPREADSHEET_ID,
|
76 |
range=RANGE_NAME,
|
77 |
valueInputOption="RAW",
|
|
|
82 |
st.error(f"Failed to update Google Sheets: {e}")
|
83 |
|
84 |
|
85 |
+
huggingface_api_key= os.getenv("HUGGINGFACE_TOKEN")
|
86 |
+
login(token=huggingface_api_key)
|
87 |
|
88 |
+
model_name = "tabularisai/multilingual-sentiment-analysis"
|
89 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
90 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
91 |
+
sentiment_analyzer = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
def preprocess_text(text):
|
94 |
+
return text.strip().lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
+
def analyze_sentiment(text):
|
97 |
+
try:
|
98 |
+
if not text.strip():
|
99 |
+
return "NEUTRAL", 0.0
|
100 |
+
processed_text = preprocess_text(text)
|
101 |
+
result = sentiment_analyzer(processed_text)[0]
|
102 |
+
|
103 |
+
print(f"Sentiment Analysis Result: {result}")
|
104 |
+
|
105 |
+
# Map raw labels to sentiments
|
106 |
+
sentiment_map = {
|
107 |
+
'Very Negative': "NEGATIVE",
|
108 |
+
'Negative': "NEGATIVE",
|
109 |
+
'Neutral': "NEUTRAL",
|
110 |
+
'Positive': "POSITIVE",
|
111 |
+
'Very Positive': "POSITIVE"
|
112 |
+
}
|
113 |
+
|
114 |
+
sentiment = sentiment_map.get(result['label'], "NEUTRAL")
|
115 |
+
return sentiment, result['score']
|
116 |
+
|
117 |
+
except Exception as e:
|
118 |
+
print(f"Error in sentiment analysis: {e}")
|
119 |
+
return "NEUTRAL", 0.5
|
120 |
|
121 |
|
122 |
def load_csv(file_path):
|
|
|
232 |
if "app_feedback" not in st.session_state:
|
233 |
st.session_state["app_feedback"] = []
|
234 |
|
235 |
+
def generate_comprehensive_summary(chunks):
|
236 |
+
full_text = " ".join([chunk[0] for chunk in chunks])
|
237 |
+
|
238 |
+
total_chunks = len(chunks)
|
239 |
+
sentiments = [chunk[1] for chunk in chunks]
|
240 |
+
|
241 |
+
context_keywords = {
|
242 |
+
'product_inquiry': ['laptop', 'headphone', 'smartphone', 'tablet', 'model', 'features'],
|
243 |
+
'pricing': ['price', 'cost', 'budget', 'discount', 'offer'],
|
244 |
+
'negotiation': ['payment', 'installment', 'financing', 'affordable', 'deal'],
|
245 |
+
'compatibility': ['compatible', 'battery life', 'OS', 'Android', 'iOS'],
|
246 |
+
'accessories': ['case', 'cover', 'charger', 'headset']
|
247 |
+
}
|
248 |
+
|
249 |
+
themes = []
|
250 |
+
for keyword_type, keywords in context_keywords.items():
|
251 |
+
if any(keyword.lower() in full_text.lower() for keyword in keywords):
|
252 |
+
themes.append(keyword_type)
|
253 |
+
|
254 |
+
positive_count = sentiments.count('POSITIVE')
|
255 |
+
negative_count = sentiments.count('NEGATIVE')
|
256 |
+
neutral_count = sentiments.count('NEUTRAL')
|
257 |
+
|
258 |
+
key_interactions = []
|
259 |
+
for chunk in chunks:
|
260 |
+
if any(keyword.lower() in chunk[0].lower() for keyword in ['laptop', 'headphone', 'tablet', 'smartphone', 'price', 'battery']):
|
261 |
+
key_interactions.append(chunk[0])
|
262 |
+
|
263 |
+
summary = f"Conversation Summary:\n"
|
264 |
+
|
265 |
+
if 'product_inquiry' in themes:
|
266 |
+
summary += "• Customer inquired about various products such as laptops, headphones, smartphones, or tablets.\n"
|
267 |
+
|
268 |
+
if 'pricing' in themes:
|
269 |
+
summary += "• Price, cost, and available discounts were discussed.\n"
|
270 |
+
|
271 |
+
if 'negotiation' in themes:
|
272 |
+
summary += "• Customer and seller discussed payment plans, financing options, or special deals.\n"
|
273 |
+
|
274 |
+
if 'compatibility' in themes:
|
275 |
+
summary += "• Compatibility of the product with different systems or accessories was explored.\n"
|
276 |
+
|
277 |
+
if 'accessories' in themes:
|
278 |
+
summary += "• Customer showed interest in additional accessories for the product.\n"
|
279 |
+
|
280 |
+
summary += f"\nConversation Sentiment:\n"
|
281 |
+
summary += f"• Positive Interactions: {positive_count}\n"
|
282 |
+
summary += f"• Negative Interactions: {negative_count}\n"
|
283 |
+
summary += f"• Neutral Interactions: {neutral_count}\n"
|
284 |
+
|
285 |
+
summary += "\nKey Conversation Points:\n"
|
286 |
+
for interaction in key_interactions[:3]: # Limit to top 3 key points
|
287 |
+
summary += f"• {interaction}\n"
|
288 |
+
|
289 |
+
if positive_count > negative_count:
|
290 |
+
summary += "\nOutcome: Constructive and promising interaction with interest in the product."
|
291 |
+
elif negative_count > positive_count:
|
292 |
+
summary += "\nOutcome: Interaction may need further follow-up or clarification on product features."
|
293 |
+
else:
|
294 |
+
summary += "\nOutcome: Neutral interaction, potential for future engagement or inquiry."
|
295 |
+
|
296 |
+
return summary
|
297 |
|
298 |
def add_to_sentiment_history(text, sentiment_label, sentiment_score, closest_objection, response):
|
299 |
st.session_state.sentiment_history.append({
|
|
|
372 |
- **Changelog**: We release regular updates to improve performance. Please refer to the changelog for new features and improvements.
|
373 |
- **How to Update**: If an update is available, follow the instructions in the settings tab to install the latest version.
|
374 |
""")
|
375 |
+
def calculate_overall_sentiment(sentiment_scores):
|
376 |
+
if sentiment_scores:
|
377 |
+
average_sentiment = sum(sentiment_scores) / len(sentiment_scores)
|
378 |
+
overall_sentiment = (
|
379 |
+
"POSITIVE" if average_sentiment > 0 else
|
380 |
+
"NEGATIVE" if average_sentiment < 0 else
|
381 |
+
"NEUTRAL"
|
382 |
+
)
|
383 |
+
else:
|
384 |
+
overall_sentiment = "NEUTRAL"
|
385 |
+
return overall_sentiment
|
386 |
|
387 |
def process_real_time_audio():
|
388 |
recognizer = sr.Recognizer()
|
|
|
390 |
|
391 |
st.write("Adjusting microphone for ambient noise... Please wait.")
|
392 |
with microphone as source:
|
393 |
+
recognizer.adjust_for_ambient_noise(source,duration=2)
|
394 |
|
395 |
st.write("Listening for audio... Speak into the microphone.")
|
396 |
while True:
|
|
|
398 |
with microphone as source:
|
399 |
audio = recognizer.listen(source, timeout=15, phrase_time_limit=20)
|
400 |
|
401 |
+
|
402 |
+
|
403 |
st.write("Transcribing audio...")
|
404 |
transcribed_text = recognizer.recognize_google(audio)
|
405 |
st.write(f"You said: {transcribed_text}")
|
|
|
409 |
break
|
410 |
|
411 |
st.markdown("### **Sentiment Analysis**")
|
412 |
+
sentiment_label, sentiment_score = analyze_sentiment(transcribed_text)
|
413 |
st.write(f"Sentiment: {sentiment_label}")
|
414 |
st.write(f"Sentiment Score: {sentiment_score}")
|
415 |
|
|
|
430 |
st.write(f"Objection: {closest_objection}")
|
431 |
st.write(f" Response: {response}")
|
432 |
|
433 |
+
update_google_sheet(
|
434 |
+
transcribed_text=transcribed_text,
|
435 |
+
sentiment=f"{sentiment_label} ({sentiment_score})",
|
436 |
+
objection=f"Objection: {closest_objection} | Response: {response}",
|
437 |
+
recommendations=str(recommendations),
|
438 |
+
overall_sentiment=f"{sentiment_label}"
|
439 |
+
)
|
440 |
|
441 |
except sr.UnknownValueError:
|
442 |
st.warning("Could not understand the audio.")
|
443 |
except Exception as e:
|
444 |
st.error(f"Error: {e}")
|
445 |
break
|
446 |
+
|
447 |
def generate_sentiment_pie_chart(sentiment_history):
|
448 |
if not sentiment_history:
|
449 |
st.warning("No sentiment history available to generate a pie chart.")
|
450 |
return
|
451 |
|
452 |
+
# Initialize sentiment counts
|
453 |
sentiment_counts = {
|
454 |
"Positive": 0,
|
455 |
"Negative": 0,
|
|
|
457 |
}
|
458 |
|
459 |
for entry in sentiment_history:
|
460 |
+
sentiment = entry["Sentiment"].capitalize() # Normalize to match "Positive", "Negative", "Neutral"
|
461 |
+
if sentiment in sentiment_counts:
|
462 |
+
sentiment_counts[sentiment] += 1
|
463 |
+
else:
|
464 |
+
# Handle unknown sentiment values gracefully
|
465 |
+
st.warning(f"Unknown sentiment encountered: {entry['Sentiment']}")
|
466 |
|
467 |
+
# Create the pie chart (using matplotlib or any charting library)
|
468 |
+
labels = list(sentiment_counts.keys())
|
469 |
+
sizes = list(sentiment_counts.values())
|
470 |
+
colors = ['#6dcf6d', '#f76c6c', '#6c8df7']
|
471 |
+
|
472 |
|
473 |
fig, ax = plt.subplots()
|
474 |
plt.figure(figsize=(6,6))
|
|
|
488 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
489 |
combined_text = " ".join([item["Text"] for item in sentiment_history])
|
490 |
|
491 |
+
# summary = summarizer(combined_text, max_length=100, min_length=30, do_sample=False)[0]["summary_text"]
|
492 |
scores = [item["Score"] for item in sentiment_history]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
493 |
|
494 |
st.markdown("## Summary of the Call")
|
495 |
+
chunks = [(entry["Text"], entry["Sentiment"]) for entry in sentiment_history]
|
496 |
+
summary = generate_comprehensive_summary(chunks)
|
497 |
st.write(summary)
|
498 |
|
499 |
st.markdown("### **Overall Sentiment for the Call**")
|
500 |
+
sentiment_scores = [entry["Score"] for entry in sentiment_history]
|
501 |
+
overall_sentiment = calculate_overall_sentiment(sentiment_scores)
|
502 |
st.write(f"Overall Sentiment: {overall_sentiment}")
|
|
|
|
|
503 |
|
504 |
col1,col2=st.columns(2)
|
505 |
with col1:
|
|
|
618 |
else:
|
619 |
st.warning("No feedback submitted yet.")
|
620 |
|
|
|
|
|
621 |
|
622 |
file_path = csv_file_path
|
623 |
data = load_csv(file_path)
|