Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,16 +14,11 @@ import matplotlib.pyplot as plt
|
|
| 14 |
from huggingface_hub import login
|
| 15 |
import os
|
| 16 |
from dotenv import load_dotenv
|
| 17 |
-
import threading
|
| 18 |
-
|
| 19 |
|
| 20 |
SPREADSHEET_ID = "1CsBub3Jlwyo7WHMQty6SDnBShIZMjl5XTVSoOKrxZhc"
|
| 21 |
RANGE_NAME = 'Sheet1!A1:E'
|
| 22 |
SERVICE_ACCOUNT_FILE = r"C:\Users\bhagy\AI\credentials.json"
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
csv_file_path = r"C:\Users\bhagy\Downloads\900_products_dataset.csv"
|
| 26 |
-
|
| 27 |
|
| 28 |
class CustomEmbeddingFunction:
|
| 29 |
def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2"):
|
|
@@ -37,14 +32,8 @@ class CustomEmbeddingFunction:
|
|
| 37 |
embeddings = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
| 38 |
return embeddings
|
| 39 |
|
| 40 |
-
|
| 41 |
-
sentiment_pipeline = pipeline("sentiment-analysis")
|
| 42 |
-
# persist_directory = "chromadb_storage"
|
| 43 |
-
# chroma_client = PersistentClient(path=persist_directory)
|
| 44 |
persist_directory = "chromadb_storage"
|
| 45 |
-
os.makedirs(persist_directory, exist_ok=True) # Ensure the directory exists
|
| 46 |
chroma_client = PersistentClient(path=persist_directory)
|
| 47 |
-
|
| 48 |
collection_name = "crm_data"
|
| 49 |
|
| 50 |
try:
|
|
@@ -92,7 +81,7 @@ hf_token= os.getenv("HUGGINGFACE_TOKEN")
|
|
| 92 |
login(token=hf_token)
|
| 93 |
if not hf_token:
|
| 94 |
raise ValueError("Hugging Face API key not found! Please set the HUGGINGFACE_TOKEN variable.")
|
| 95 |
-
print(f"API Key Loaded: {hf_token[:5]}
|
| 96 |
|
| 97 |
model_name = "tabularisai/multilingual-sentiment-analysis"
|
| 98 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
@@ -110,8 +99,6 @@ def analyze_sentiment(text):
|
|
| 110 |
result = sentiment_analyzer(processed_text)[0]
|
| 111 |
|
| 112 |
print(f"Sentiment Analysis Result: {result}")
|
| 113 |
-
|
| 114 |
-
|
| 115 |
sentiment_map = {
|
| 116 |
'Very Negative': "NEGATIVE",
|
| 117 |
'Negative': "NEGATIVE",
|
|
@@ -134,17 +121,13 @@ def load_csv(file_path):
|
|
| 134 |
if data is not None:
|
| 135 |
st.session_state.crm_data = data
|
| 136 |
print("CRM data loaded successfully!")
|
| 137 |
-
|
| 138 |
-
else:
|
| 139 |
-
st.error("Failed to load CRM data: File is empty or invalid.")
|
| 140 |
except Exception as e:
|
| 141 |
-
st.error(f"Error loading CSV: {e}")
|
| 142 |
print(f"Error loading CSV: {e}")
|
| 143 |
return None
|
| 144 |
|
| 145 |
data = load_csv(csv_file_path)
|
| 146 |
|
| 147 |
-
|
| 148 |
def process_crm_data(data):
|
| 149 |
try:
|
| 150 |
chunks = [str(row) for row in data.to_dict(orient="records")]
|
|
@@ -186,8 +169,6 @@ def query_crm_data_with_context(prompt, top_k=3):
|
|
| 186 |
st.error(f"Error querying CRM data: {e}")
|
| 187 |
return ["Error in querying recommendations."]
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
| 191 |
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 192 |
faiss_index = faiss.IndexFlatL2(384)
|
| 193 |
|
|
@@ -202,13 +183,8 @@ def load_objection_responses(csv_file_path):
|
|
| 202 |
|
| 203 |
objection_response_pairs = load_objection_responses(r"C:\Users\bhagy\OneDrive\Desktop\INFOSYS PROJECT\objections_responses.csv")
|
| 204 |
objections = list(objection_response_pairs.keys())
|
| 205 |
-
# objection_embeddings = sentence_model.encode(objections)
|
| 206 |
-
# faiss_index.add(np.array(objection_embeddings, dtype="float32"))
|
| 207 |
-
|
| 208 |
objection_embeddings = sentence_model.encode(objections)
|
| 209 |
-
|
| 210 |
-
faiss_index.add(objection_embeddings.astype("float32"))
|
| 211 |
-
|
| 212 |
|
| 213 |
def find_closest_objection(query):
|
| 214 |
query_embedding = sentence_model.encode([query])
|
|
@@ -300,7 +276,7 @@ def generate_comprehensive_summary(chunks):
|
|
| 300 |
summary += f"• Neutral Interactions: {neutral_count}\n"
|
| 301 |
|
| 302 |
summary += "\nKey Conversation Points:\n"
|
| 303 |
-
for interaction in key_interactions[:3]:
|
| 304 |
summary += f"• {interaction}\n"
|
| 305 |
|
| 306 |
if positive_count > negative_count:
|
|
@@ -325,8 +301,8 @@ def show_help():
|
|
| 325 |
|
| 326 |
st.header("1. Introduction to the AI Assistant")
|
| 327 |
st.write("""
|
| 328 |
-
-
|
| 329 |
-
-
|
| 330 |
- Real-time speech-to-text conversion and sentiment analysis.
|
| 331 |
- Product recommendations based on customer context.
|
| 332 |
- Dynamic question prompt generator.
|
|
@@ -336,58 +312,58 @@ def show_help():
|
|
| 336 |
|
| 337 |
st.header("2. Getting Started")
|
| 338 |
st.write("""
|
| 339 |
-
-
|
| 340 |
-
-
|
| 341 |
""")
|
| 342 |
|
| 343 |
st.header("3. Using the Assistant During Sales Calls")
|
| 344 |
st.write("""
|
| 345 |
-
-
|
| 346 |
-
-
|
| 347 |
""")
|
| 348 |
|
| 349 |
|
| 350 |
st.header("4. Understanding the Interface")
|
| 351 |
st.write("""
|
| 352 |
-
-
|
| 353 |
-
-
|
| 354 |
-
-
|
| 355 |
-
-
|
| 356 |
""")
|
| 357 |
|
| 358 |
|
| 359 |
st.header("5. FAQs and Troubleshooting")
|
| 360 |
st.write("""
|
| 361 |
-
-
|
| 362 |
-
-
|
| 363 |
-
-
|
| 364 |
""")
|
| 365 |
|
| 366 |
|
| 367 |
st.header("6. Support and Contact Information")
|
| 368 |
st.write("""
|
| 369 |
-
-
|
| 370 |
-
-
|
| 371 |
-
-
|
| 372 |
""")
|
| 373 |
|
| 374 |
st.header("7. Advanced Features")
|
| 375 |
st.write("""
|
| 376 |
-
-
|
| 377 |
-
-
|
| 378 |
""")
|
| 379 |
|
| 380 |
st.header("8. Privacy and Security")
|
| 381 |
st.write("""
|
| 382 |
-
-
|
| 383 |
-
-
|
| 384 |
""")
|
| 385 |
|
| 386 |
|
| 387 |
st.header("9. Updates and New Features")
|
| 388 |
st.write("""
|
| 389 |
-
-
|
| 390 |
-
-
|
| 391 |
""")
|
| 392 |
def calculate_overall_sentiment(sentiment_scores):
|
| 393 |
if sentiment_scores:
|
|
@@ -418,14 +394,14 @@ def process_real_time_audio():
|
|
| 418 |
|
| 419 |
|
| 420 |
st.write("Transcribing audio...")
|
| 421 |
-
transcribed_text = recognizer.
|
| 422 |
st.write(f"You said: {transcribed_text}")
|
| 423 |
|
| 424 |
if 'stop' in transcribed_text.lower():
|
| 425 |
st.warning("Stopping the speech recognition process.")
|
| 426 |
break
|
| 427 |
|
| 428 |
-
st.markdown("###
|
| 429 |
sentiment_label, sentiment_score = analyze_sentiment(transcribed_text)
|
| 430 |
st.write(f"Sentiment: {sentiment_label}")
|
| 431 |
st.write(f"Sentiment Score: {sentiment_score}")
|
|
@@ -434,15 +410,15 @@ def process_real_time_audio():
|
|
| 434 |
response = None
|
| 435 |
|
| 436 |
add_to_sentiment_history(transcribed_text, sentiment_label, sentiment_score, closest_objection, response)
|
| 437 |
-
st.markdown("###
|
| 438 |
recommendations = query_crm_data_with_context(transcribed_text)
|
| 439 |
for i, rec in enumerate(recommendations, start=1):
|
| 440 |
if isinstance(rec, dict) and 'Product' in rec and 'Recommendations' in rec:
|
| 441 |
-
st.markdown(f"-
|
| 442 |
else:
|
| 443 |
st.markdown(f"- {rec}")
|
| 444 |
|
| 445 |
-
st.markdown("###
|
| 446 |
closest_objection, response = find_closest_objection(transcribed_text)
|
| 447 |
st.write(f"Objection: {closest_objection}")
|
| 448 |
st.write(f" Response: {response}")
|
|
@@ -460,8 +436,6 @@ def process_real_time_audio():
|
|
| 460 |
except Exception as e:
|
| 461 |
st.error(f"Error: {e}")
|
| 462 |
break
|
| 463 |
-
speech_thread = threading.Thread(target=recognize_speech, daemon=True)
|
| 464 |
-
speech_thread.start()
|
| 465 |
|
| 466 |
def generate_sentiment_pie_chart(sentiment_history):
|
| 467 |
if not sentiment_history:
|
|
@@ -490,7 +464,7 @@ def generate_sentiment_pie_chart(sentiment_history):
|
|
| 490 |
ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90, colors=colors,textprops={'fontsize':12, 'color':'white'})
|
| 491 |
fig.patch.set_facecolor('none')
|
| 492 |
ax.axis('equal')
|
| 493 |
-
st.markdown("###
|
| 494 |
st.pyplot(fig)
|
| 495 |
|
| 496 |
def generate_post_call_summary(sentiment_history, recommendations=[]):
|
|
@@ -503,7 +477,6 @@ def generate_post_call_summary(sentiment_history, recommendations=[]):
|
|
| 503 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 504 |
combined_text = " ".join([item["Text"] for item in sentiment_history])
|
| 505 |
|
| 506 |
-
# summary = summarizer(combined_text, max_length=100, min_length=30, do_sample=False)[0]["summary_text"]
|
| 507 |
scores = [item["Score"] for item in sentiment_history]
|
| 508 |
|
| 509 |
st.markdown("## Summary of the Call")
|
|
@@ -511,7 +484,7 @@ def generate_post_call_summary(sentiment_history, recommendations=[]):
|
|
| 511 |
summary = generate_comprehensive_summary(chunks)
|
| 512 |
st.write(summary)
|
| 513 |
|
| 514 |
-
st.markdown("###
|
| 515 |
sentiment_scores = [entry["Score"] for entry in sentiment_history]
|
| 516 |
overall_sentiment = calculate_overall_sentiment(sentiment_scores)
|
| 517 |
st.write(f"Overall Sentiment: {overall_sentiment}")
|
|
@@ -522,7 +495,7 @@ def generate_post_call_summary(sentiment_history, recommendations=[]):
|
|
| 522 |
plt.figure(figsize=(10, 6))
|
| 523 |
plt.bar(range(len(sentiment_scores)), sentiment_scores, color=colors)
|
| 524 |
plt.axhline(0, color='black', linestyle='--', linewidth=1, label='Neutral')
|
| 525 |
-
st.markdown("###
|
| 526 |
plt.title("Sentiment Trend Throughout the Call")
|
| 527 |
plt.xlabel("Segment")
|
| 528 |
plt.ylabel("Sentiment Score")
|
|
@@ -533,7 +506,7 @@ def generate_post_call_summary(sentiment_history, recommendations=[]):
|
|
| 533 |
with col2:
|
| 534 |
generate_sentiment_pie_chart(sentiment_history)
|
| 535 |
|
| 536 |
-
st.markdown("###
|
| 537 |
|
| 538 |
|
| 539 |
if overall_sentiment == "Negative":
|
|
@@ -545,28 +518,26 @@ def generate_post_call_summary(sentiment_history, recommendations=[]):
|
|
| 545 |
|
| 546 |
|
| 547 |
if recommendations:
|
| 548 |
-
st.write("###
|
| 549 |
for rec in recommendations:
|
| 550 |
st.write(f"- {rec}")
|
| 551 |
|
| 552 |
if sentiment_history:
|
| 553 |
-
st.write("###
|
| 554 |
for idx, entry in enumerate(sentiment_history, 1):
|
| 555 |
st.write(f"Segment {idx}: Sentiment = {entry['Sentiment']}, Score = {entry['Score']:.2f}")
|
| 556 |
|
| 557 |
-
# Main
|
| 558 |
def main():
|
| 559 |
st.title("🤖 RealTime AI-Powered Sales Assistant For Enhanced Conversation")
|
| 560 |
st.markdown(
|
| 561 |
"An intelligent assistant to analyze speech, handle objections, and recommend products in real-time."
|
| 562 |
)
|
| 563 |
|
| 564 |
-
|
| 565 |
-
tabs = st.tabs(["🎙️ Real-Time Audio", "📊 Text Search ", "📋 Visualization","🕘 Query History","❓Help","💬 Feedback"])
|
| 566 |
|
| 567 |
|
| 568 |
with tabs[0]:
|
| 569 |
-
st.header("
|
| 570 |
st.write(
|
| 571 |
"Use this feature to analyze live speech, perform sentiment analysis, and get product recommendations."
|
| 572 |
)
|
|
@@ -610,7 +581,6 @@ def main():
|
|
| 610 |
st.dataframe(st.session_state["crm_history"])
|
| 611 |
|
| 612 |
with tabs[4]:
|
| 613 |
-
# st.subheader("❓Help")
|
| 614 |
show_help()
|
| 615 |
|
| 616 |
with tabs[5]:
|
|
@@ -623,7 +593,6 @@ def main():
|
|
| 623 |
st.session_state["app_feedback"].append(feedback)
|
| 624 |
st.success("Thank you for your feedback!")
|
| 625 |
|
| 626 |
-
# Display previous feedback
|
| 627 |
if st.session_state["app_feedback"]:
|
| 628 |
st.write("### Previous Feedback:")
|
| 629 |
for idx, feedback_entry in enumerate(st.session_state["app_feedback"], 1):
|
|
|
|
| 14 |
from huggingface_hub import login
|
| 15 |
import os
|
| 16 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
| 17 |
|
| 18 |
SPREADSHEET_ID = "1CsBub3Jlwyo7WHMQty6SDnBShIZMjl5XTVSoOKrxZhc"
|
| 19 |
RANGE_NAME = 'Sheet1!A1:E'
|
| 20 |
SERVICE_ACCOUNT_FILE = r"C:\Users\bhagy\AI\credentials.json"
|
| 21 |
+
csv_file_path = r"C:\Users\bhagy\OneDrive\Desktop\INFOSYS PROJECT\900_products_dataset.csv"
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
class CustomEmbeddingFunction:
|
| 24 |
def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2"):
|
|
|
|
| 32 |
embeddings = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
| 33 |
return embeddings
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
persist_directory = "chromadb_storage"
|
|
|
|
| 36 |
chroma_client = PersistentClient(path=persist_directory)
|
|
|
|
| 37 |
collection_name = "crm_data"
|
| 38 |
|
| 39 |
try:
|
|
|
|
| 81 |
login(token=hf_token)
|
| 82 |
if not hf_token:
|
| 83 |
raise ValueError("Hugging Face API key not found! Please set the HUGGINGFACE_TOKEN variable.")
|
| 84 |
+
print(f"API Key Loaded: {hf_token[:5]}")
|
| 85 |
|
| 86 |
model_name = "tabularisai/multilingual-sentiment-analysis"
|
| 87 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
|
|
| 99 |
result = sentiment_analyzer(processed_text)[0]
|
| 100 |
|
| 101 |
print(f"Sentiment Analysis Result: {result}")
|
|
|
|
|
|
|
| 102 |
sentiment_map = {
|
| 103 |
'Very Negative': "NEGATIVE",
|
| 104 |
'Negative': "NEGATIVE",
|
|
|
|
| 121 |
if data is not None:
|
| 122 |
st.session_state.crm_data = data
|
| 123 |
print("CRM data loaded successfully!")
|
| 124 |
+
return data
|
|
|
|
|
|
|
| 125 |
except Exception as e:
|
|
|
|
| 126 |
print(f"Error loading CSV: {e}")
|
| 127 |
return None
|
| 128 |
|
| 129 |
data = load_csv(csv_file_path)
|
| 130 |
|
|
|
|
| 131 |
def process_crm_data(data):
|
| 132 |
try:
|
| 133 |
chunks = [str(row) for row in data.to_dict(orient="records")]
|
|
|
|
| 169 |
st.error(f"Error querying CRM data: {e}")
|
| 170 |
return ["Error in querying recommendations."]
|
| 171 |
|
|
|
|
|
|
|
| 172 |
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 173 |
faiss_index = faiss.IndexFlatL2(384)
|
| 174 |
|
|
|
|
| 183 |
|
| 184 |
objection_response_pairs = load_objection_responses(r"C:\Users\bhagy\OneDrive\Desktop\INFOSYS PROJECT\objections_responses.csv")
|
| 185 |
objections = list(objection_response_pairs.keys())
|
|
|
|
|
|
|
|
|
|
| 186 |
objection_embeddings = sentence_model.encode(objections)
|
| 187 |
+
faiss_index.add(np.array(objection_embeddings, dtype="float32"))
|
|
|
|
|
|
|
| 188 |
|
| 189 |
def find_closest_objection(query):
|
| 190 |
query_embedding = sentence_model.encode([query])
|
|
|
|
| 276 |
summary += f"• Neutral Interactions: {neutral_count}\n"
|
| 277 |
|
| 278 |
summary += "\nKey Conversation Points:\n"
|
| 279 |
+
for interaction in key_interactions[:3]:
|
| 280 |
summary += f"• {interaction}\n"
|
| 281 |
|
| 282 |
if positive_count > negative_count:
|
|
|
|
| 301 |
|
| 302 |
st.header("1. Introduction to the AI Assistant")
|
| 303 |
st.write("""
|
| 304 |
+
- *What It Does*: The assistant analyzes live sales calls in real-time. It detects sentiment shifts, provides product recommendations, and suggests dynamic question handling techniques.
|
| 305 |
+
- *Key Features*:
|
| 306 |
- Real-time speech-to-text conversion and sentiment analysis.
|
| 307 |
- Product recommendations based on customer context.
|
| 308 |
- Dynamic question prompt generator.
|
|
|
|
| 312 |
|
| 313 |
st.header("2. Getting Started")
|
| 314 |
st.write("""
|
| 315 |
+
- *How to Start a Call*: To start a sales call, Click on Start Listening. Once connected, initiate the call, and the assistant will begin analyzing.
|
| 316 |
+
- *What to Expect*: During the call, the assistant will provide real-time feedback, such as sentiment scores, product recommendations, and objection handling tips.
|
| 317 |
""")
|
| 318 |
|
| 319 |
st.header("3. Using the Assistant During Sales Calls")
|
| 320 |
st.write("""
|
| 321 |
+
- *Speech-to-Text Instructions*: Speak clearly into your microphone for the assistant to accurately capture and analyze your speech.
|
| 322 |
+
- *Real-time Feedback*: The assistant will display real-time feedback on the sentiment of the conversation, suggest responses for objections, and provide product recommendations.
|
| 323 |
""")
|
| 324 |
|
| 325 |
|
| 326 |
st.header("4. Understanding the Interface")
|
| 327 |
st.write("""
|
| 328 |
+
- *Tabs Navigation*: The interface has different tabs:
|
| 329 |
+
- *Call Summary*: After the call, review the summary, which highlights conversation key points.
|
| 330 |
+
- *Sentiment Analysis*: See how the sentiment changed throughout the conversation.
|
| 331 |
+
- *Product Recommendations*: View the recommended products based on customer intent and conversation context.
|
| 332 |
""")
|
| 333 |
|
| 334 |
|
| 335 |
st.header("5. FAQs and Troubleshooting")
|
| 336 |
st.write("""
|
| 337 |
+
- *Sentiment Detection Accuracy*: If the assistant's sentiment analysis isn't accurate, ensure you speak clearly and avoid background noise.
|
| 338 |
+
- *Speech Recognition Issues*: Rephrase unclear statements and ensure the microphone is working well.
|
| 339 |
+
- *Context Handling*: If the assistant misses some context, remind it of the product or the customer’s intent.
|
| 340 |
""")
|
| 341 |
|
| 342 |
|
| 343 |
st.header("6. Support and Contact Information")
|
| 344 |
st.write("""
|
| 345 |
+
- *Live Chat Support*: Chat with us in real-time by clicking the support icon in the bottom right.
|
| 346 |
+
- *Email and Phone Support*: You can also reach us at [email protected] or call us at +1-800-555-1234.
|
| 347 |
+
- *Feedback*: Please provide feedback to help us improve the assistant.
|
| 348 |
""")
|
| 349 |
|
| 350 |
st.header("7. Advanced Features")
|
| 351 |
st.write("""
|
| 352 |
+
- *Integration with CRM and Google Sheets*: Sync with CRM systems and Google Sheets to enhance product recommendations.
|
| 353 |
+
- *Customization Options*: Customize the assistant’s tone, product categories, and question prompts through the settings tab.
|
| 354 |
""")
|
| 355 |
|
| 356 |
st.header("8. Privacy and Security")
|
| 357 |
st.write("""
|
| 358 |
+
- *Data Privacy*: All conversations are anonymized for analysis purposes. We ensure compliance with privacy regulations.
|
| 359 |
+
- *Security Protocols*: All data is encrypted and stored securely.
|
| 360 |
""")
|
| 361 |
|
| 362 |
|
| 363 |
st.header("9. Updates and New Features")
|
| 364 |
st.write("""
|
| 365 |
+
- *Changelog*: We release regular updates to improve performance. Please refer to the changelog for new features and improvements.
|
| 366 |
+
- *How to Update*: If an update is available, follow the instructions in the settings tab to install the latest version.
|
| 367 |
""")
|
| 368 |
def calculate_overall_sentiment(sentiment_scores):
|
| 369 |
if sentiment_scores:
|
|
|
|
| 394 |
|
| 395 |
|
| 396 |
st.write("Transcribing audio...")
|
| 397 |
+
transcribed_text = recognizer.recognize_google(audio)
|
| 398 |
st.write(f"You said: {transcribed_text}")
|
| 399 |
|
| 400 |
if 'stop' in transcribed_text.lower():
|
| 401 |
st.warning("Stopping the speech recognition process.")
|
| 402 |
break
|
| 403 |
|
| 404 |
+
st.markdown("### *Sentiment Analysis*")
|
| 405 |
sentiment_label, sentiment_score = analyze_sentiment(transcribed_text)
|
| 406 |
st.write(f"Sentiment: {sentiment_label}")
|
| 407 |
st.write(f"Sentiment Score: {sentiment_score}")
|
|
|
|
| 410 |
response = None
|
| 411 |
|
| 412 |
add_to_sentiment_history(transcribed_text, sentiment_label, sentiment_score, closest_objection, response)
|
| 413 |
+
st.markdown("### *Recommendations*")
|
| 414 |
recommendations = query_crm_data_with_context(transcribed_text)
|
| 415 |
for i, rec in enumerate(recommendations, start=1):
|
| 416 |
if isinstance(rec, dict) and 'Product' in rec and 'Recommendations' in rec:
|
| 417 |
+
st.markdown(f"- *{rec['Product']}*: {rec['Recommendations']}")
|
| 418 |
else:
|
| 419 |
st.markdown(f"- {rec}")
|
| 420 |
|
| 421 |
+
st.markdown("### *Objection Handling*")
|
| 422 |
closest_objection, response = find_closest_objection(transcribed_text)
|
| 423 |
st.write(f"Objection: {closest_objection}")
|
| 424 |
st.write(f" Response: {response}")
|
|
|
|
| 436 |
except Exception as e:
|
| 437 |
st.error(f"Error: {e}")
|
| 438 |
break
|
|
|
|
|
|
|
| 439 |
|
| 440 |
def generate_sentiment_pie_chart(sentiment_history):
|
| 441 |
if not sentiment_history:
|
|
|
|
| 464 |
ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90, colors=colors,textprops={'fontsize':12, 'color':'white'})
|
| 465 |
fig.patch.set_facecolor('none')
|
| 466 |
ax.axis('equal')
|
| 467 |
+
st.markdown("### Sentiment Distribution")
|
| 468 |
st.pyplot(fig)
|
| 469 |
|
| 470 |
def generate_post_call_summary(sentiment_history, recommendations=[]):
|
|
|
|
| 477 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 478 |
combined_text = " ".join([item["Text"] for item in sentiment_history])
|
| 479 |
|
|
|
|
| 480 |
scores = [item["Score"] for item in sentiment_history]
|
| 481 |
|
| 482 |
st.markdown("## Summary of the Call")
|
|
|
|
| 484 |
summary = generate_comprehensive_summary(chunks)
|
| 485 |
st.write(summary)
|
| 486 |
|
| 487 |
+
st.markdown("### *Overall Sentiment for the Call*")
|
| 488 |
sentiment_scores = [entry["Score"] for entry in sentiment_history]
|
| 489 |
overall_sentiment = calculate_overall_sentiment(sentiment_scores)
|
| 490 |
st.write(f"Overall Sentiment: {overall_sentiment}")
|
|
|
|
| 495 |
plt.figure(figsize=(10, 6))
|
| 496 |
plt.bar(range(len(sentiment_scores)), sentiment_scores, color=colors)
|
| 497 |
plt.axhline(0, color='black', linestyle='--', linewidth=1, label='Neutral')
|
| 498 |
+
st.markdown("### *Sentiment Trend Bar Chart*")
|
| 499 |
plt.title("Sentiment Trend Throughout the Call")
|
| 500 |
plt.xlabel("Segment")
|
| 501 |
plt.ylabel("Sentiment Score")
|
|
|
|
| 506 |
with col2:
|
| 507 |
generate_sentiment_pie_chart(sentiment_history)
|
| 508 |
|
| 509 |
+
st.markdown("### *Future Insights*")
|
| 510 |
|
| 511 |
|
| 512 |
if overall_sentiment == "Negative":
|
|
|
|
| 518 |
|
| 519 |
|
| 520 |
if recommendations:
|
| 521 |
+
st.write("### *Product Recommendations*")
|
| 522 |
for rec in recommendations:
|
| 523 |
st.write(f"- {rec}")
|
| 524 |
|
| 525 |
if sentiment_history:
|
| 526 |
+
st.write("### *Sentiment Breakdown by Segment*")
|
| 527 |
for idx, entry in enumerate(sentiment_history, 1):
|
| 528 |
st.write(f"Segment {idx}: Sentiment = {entry['Sentiment']}, Score = {entry['Score']:.2f}")
|
| 529 |
|
|
|
|
| 530 |
def main():
|
| 531 |
st.title("🤖 RealTime AI-Powered Sales Assistant For Enhanced Conversation")
|
| 532 |
st.markdown(
|
| 533 |
"An intelligent assistant to analyze speech, handle objections, and recommend products in real-time."
|
| 534 |
)
|
| 535 |
|
| 536 |
+
tabs = st.tabs(["🎙 Real-Time Audio", "📊 Text Search ", "📋 Visualization","🕘 Query History","❓Help","💬 Feedback"])
|
|
|
|
| 537 |
|
| 538 |
|
| 539 |
with tabs[0]:
|
| 540 |
+
st.header("🎙 Real-Time Audio Analysis")
|
| 541 |
st.write(
|
| 542 |
"Use this feature to analyze live speech, perform sentiment analysis, and get product recommendations."
|
| 543 |
)
|
|
|
|
| 581 |
st.dataframe(st.session_state["crm_history"])
|
| 582 |
|
| 583 |
with tabs[4]:
|
|
|
|
| 584 |
show_help()
|
| 585 |
|
| 586 |
with tabs[5]:
|
|
|
|
| 593 |
st.session_state["app_feedback"].append(feedback)
|
| 594 |
st.success("Thank you for your feedback!")
|
| 595 |
|
|
|
|
| 596 |
if st.session_state["app_feedback"]:
|
| 597 |
st.write("### Previous Feedback:")
|
| 598 |
for idx, feedback_entry in enumerate(st.session_state["app_feedback"], 1):
|