bhagyabonam commited on
Commit
0683725
·
verified ·
1 Parent(s): 326a5e4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -2
app.py CHANGED
@@ -213,14 +213,38 @@ objection_response_pairs = load_objection_responses(r"C:\Users\bhagy\OneDrive\De
213
  objections = list(objection_response_pairs.keys())
214
  objection_embeddings = sentence_model.encode(objections)
215
  objection_embeddings = np.array(objection_embeddings, dtype="float32")
 
 
 
 
 
 
 
 
 
 
216
  if len(objection_embeddings.shape) == 1:
217
  objection_embeddings = objection_embeddings.reshape(1, -1) # Reshape for a single embedding
218
  elif len(objection_embeddings.shape) == 2:
219
- pass
220
  else:
221
- raise ValueError("Unexpected shape for objection embeddings:", objection_embeddings.shape)
 
 
 
 
 
222
  faiss_index.add(objection_embeddings)
223
 
 
 
 
 
 
 
 
 
 
224
  def find_closest_objection(query):
225
  query_embedding = sentence_model.encode([query])
226
  distances, indices = faiss_index.search(np.array(query_embedding, dtype="float32"), 1)
 
213
  objections = list(objection_response_pairs.keys())
214
  objection_embeddings = sentence_model.encode(objections)
215
  objection_embeddings = np.array(objection_embeddings, dtype="float32")
216
+ print(f"Shape of objection_embeddings: {objection_embeddings.shape}")
217
+
218
+ # Assuming you know the expected dimension of the embeddings (e.g., 768)
219
+ expected_dim = 768 # Example value for sentence embeddings (replace with the actual dimension)
220
+
221
+ # Check if the embeddings dimensionality matches the expected dimension
222
+ if objection_embeddings.shape[1] != expected_dim:
223
+ raise ValueError(f"Dimensionality of embeddings {objection_embeddings.shape[1]} does not match expected dimension {expected_dim}.")
224
+
225
+ # If the shape is (1, d) (e.g., a single embedding), reshape it to (1, d)
226
  if len(objection_embeddings.shape) == 1:
227
  objection_embeddings = objection_embeddings.reshape(1, -1) # Reshape for a single embedding
228
  elif len(objection_embeddings.shape) == 2:
229
+ pass # The shape is already in the expected form (num_samples, dim)
230
  else:
231
+ raise ValueError(f"Unexpected shape for objection embeddings: {objection_embeddings.shape}")
232
+
233
+ # Create Faiss index with the correct dimensionality (make sure this matches the embedding size)
234
+ faiss_index = faiss.IndexFlatL2(expected_dim)
235
+
236
+ # Now add the embeddings to the Faiss index
237
  faiss_index.add(objection_embeddings)
238
 
239
+ print(f"Successfully added {objection_embeddings.shape[0]} embeddings to the Faiss index.")
240
+ # if len(objection_embeddings.shape) == 1:
241
+ # objection_embeddings = objection_embeddings.reshape(1, -1) # Reshape for a single embedding
242
+ # elif len(objection_embeddings.shape) == 2:
243
+ # pass
244
+ # else:
245
+ # raise ValueError("Unexpected shape for objection embeddings:", objection_embeddings.shape)
246
+ # faiss_index.add(objection_embeddings)
247
+
248
  def find_closest_objection(query):
249
  query_embedding = sentence_model.encode([query])
250
  distances, indices = faiss_index.search(np.array(query_embedding, dtype="float32"), 1)