bhagyabonam's picture
Update app.py
b555903 verified
from chromadb.config import Settings
from chromadb import PersistentClient
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification, pipeline
import pandas as pd
import numpy as np
import streamlit as st
import speech_recognition as sr
from google.oauth2.service_account import Credentials
from googleapiclient.discovery import build
import torch
import faiss
from sentence_transformers import SentenceTransformer
import matplotlib.pyplot as plt
from huggingface_hub import login
import os
from dotenv import load_dotenv
import whisper
import sounddevice as sd
import queue
import tempfile
import scipy.io.wavfile as wav
SPREADSHEET_ID = "1CsBub3Jlwyo7WHMQty6SDnBShIZMjl5XTVSoOKrxZhc"
RANGE_NAME = 'Sheet1!A1:E'
SERVICE_ACCOUNT_FILE = r"C:\Users\bhagy\AI\credentials.json"
csv_file_path = r"C:\Users\bhagy\OneDrive\Desktop\INFOSYS PROJECT\900_products_dataset.csv"
class CustomEmbeddingFunction:
def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
def __call__(self, text):
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
outputs = self.model(**inputs)
embeddings = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
return embeddings
persist_directory = "chromadb_storage"
chroma_client = PersistentClient(path=persist_directory)
collection_name = "crm_data"
try:
collection = chroma_client.get_collection(name=collection_name)
except Exception:
collection = chroma_client.create_collection(name=collection_name)
embedding_fn = CustomEmbeddingFunction()
def get_google_sheets_service():
creds = Credentials.from_service_account_file(
SERVICE_ACCOUNT_FILE,
scopes=["https://www.googleapis.com/auth/spreadsheets"]
)
return creds
def update_google_sheet(transcribed_text, sentiment,objection, recommendations,overall_sentiment):
creds = get_google_sheets_service()
service = build('sheets', 'v4', credentials=creds)
sheet = service.spreadsheets()
values = [[
transcribed_text,
sentiment,
objection,
recommendations,
overall_sentiment
]]
body = {'values': values}
header=["transcribed_text", "sentiment","objection", "recommendations","overall_sentiment"]
all_values=[header]+values
body = {'values': values}
try:
result = sheet.values().append(
spreadsheetId=SPREADSHEET_ID,
range=RANGE_NAME,
valueInputOption="RAW",
body=body
).execute()
st.success("Response and sentiment written to Google Sheets!")
except Exception as e:
st.error(f"Failed to update Google Sheets: {e}")
load_dotenv()
hf_token= os.getenv("HUGGINGFACE_TOKEN")
login(token=hf_token)
if not hf_token:
raise ValueError("Hugging Face API key not found! Please set the HUGGINGFACE_TOKEN variable.")
print(f"API Key Loaded: {hf_token[:5]}")
model_name = "tabularisai/multilingual-sentiment-analysis"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
sentiment_analyzer = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
def preprocess_text(text):
return text.strip().lower()
def analyze_sentiment(text):
try:
if not text.strip():
return "NEUTRAL", 0.0
processed_text = preprocess_text(text)
result = sentiment_analyzer(processed_text)[0]
print(f"Sentiment Analysis Result: {result}")
sentiment_map = {
'Very Negative': "NEGATIVE",
'Negative': "NEGATIVE",
'Neutral': "NEUTRAL",
'Positive': "POSITIVE",
'Very Positive': "POSITIVE"
}
sentiment = sentiment_map.get(result['label'], "NEUTRAL")
return sentiment, result['score']
except Exception as e:
print(f"Error in sentiment analysis: {e}")
return "NEUTRAL", 0.5
def load_csv(file_path):
try:
data = pd.read_csv(file_path)
if data is not None:
st.session_state.crm_data = data
print("CRM data loaded successfully!")
return data
except Exception as e:
print(f"Error loading CSV: {e}")
return None
data = load_csv(csv_file_path)
def process_crm_data(data):
try:
chunks = [str(row) for row in data.to_dict(orient="records")]
ids = [f"doc_{i}" for i in range(len(chunks))]
embeddings = [embedding_fn(chunk) for chunk in chunks]
collection.add(
embeddings=embeddings,
documents=chunks,
ids=ids
)
print(f"Processed and stored {len(chunks)} CRM records.")
print("CRM data processed and stored successfully!")
except Exception as e:
st.error(f"Error processing CRM data: {e}")
product_keywords = ['phone', 'smartphone', 'mobile', 'tablet', 'laptop', 'cell phone', 'headphones', 'smartwatch','vivo','xiaomi','sony','Apple','Oppo','Realme','Asus','Nokia','Lenovo','Samsung','Google','Motorola','OnePlus','Huawei',]
def query_crm_data_with_context(prompt, top_k=3):
try:
prompt_embedding = embedding_fn(prompt)
collection = chroma_client.get_collection("crm_data")
results = collection.query(
query_embeddings=[prompt_embedding],
n_results=top_k
)
matched_keywords = [kw for kw in product_keywords if kw in prompt.lower()]
if not matched_keywords:
return ["No relevant recommendations found as no product names were mentioned in the query."]
relevant_docs = []
for doc in results["documents"][0]:
if any(kw in doc.lower() for kw in matched_keywords):
relevant_docs.append(doc)
return relevant_docs if relevant_docs else ["No relevant recommendations found for the mentioned products."]
except Exception as e:
st.error(f"Error querying CRM data: {e}")
return ["Error in querying recommendations."]
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
faiss_index = faiss.IndexFlatL2(384)
def load_objection_responses(csv_file_path):
try:
df = pd.read_csv(csv_file_path)
objection_response_pairs = dict(zip(df['Objection'], df['Response']))
return objection_response_pairs
except Exception as e:
print(f"Error loading objections CSV: {e}")
return {}
objection_response_pairs = load_objection_responses(r"C:\Users\bhagy\OneDrive\Desktop\INFOSYS PROJECT\objections_responses.csv")
objections = list(objection_response_pairs.keys())
objection_embeddings = sentence_model.encode(objections)
objection_embeddings = objection_embeddings.reshape(-1, 384) # Reshape to 2D array
faiss_index.add(objection_embeddings.astype("float32"))
def find_closest_objection(query):
query_embedding = sentence_model.encode([query])
distances, indices = faiss_index.search(np.array(query_embedding, dtype="float32"), 1)
closest_index = indices[0][0]
closest_objection = objections[closest_index]
response = objection_response_pairs[closest_objection]
if distances[0][0] > 0.6:
return "No objection found", "No Response"
return closest_objection, response
def handle_objection_and_recommendation(prompt):
closest_objection, objection_response = find_closest_objection(prompt)
recommendations = query_crm_data_with_context(prompt)
return closest_objection, objection_response, recommendations
if "is_listening" not in st.session_state:
st.session_state.is_listening = False
if "sentiment_history" not in st.session_state:
st.session_state.sentiment_history = []
if "crm_data" not in st.session_state:
st.session_state.crm_data = load_csv(csv_file_path)
else:
print("CRM data already loaded from session state.")
if st.session_state.crm_data is not None:
process_crm_data(st.session_state.crm_data)
else:
st.error("Failed to load CRM data.")
if "crm_history" not in st.session_state:
st.session_state["crm_history"] = []
if "app_feedback" not in st.session_state:
st.session_state["app_feedback"] = []
def generate_comprehensive_summary(chunks):
full_text = " ".join([chunk[0] for chunk in chunks])
total_chunks = len(chunks)
sentiments = [chunk[1] for chunk in chunks]
context_keywords = {
'product_inquiry': ['laptop', 'headphone', 'smartphone', 'tablet', 'model', 'features'],
'pricing': ['price', 'cost', 'budget', 'discount', 'offer'],
'negotiation': ['payment', 'installment', 'financing', 'affordable', 'deal'],
'compatibility': ['compatible', 'battery life', 'OS', 'Android', 'iOS'],
'accessories': ['case', 'cover', 'charger', 'headset']
}
themes = []
for keyword_type, keywords in context_keywords.items():
if any(keyword.lower() in full_text.lower() for keyword in keywords):
themes.append(keyword_type)
positive_count = sentiments.count('POSITIVE')
negative_count = sentiments.count('NEGATIVE')
neutral_count = sentiments.count('NEUTRAL')
key_interactions = []
for chunk in chunks:
if any(keyword.lower() in chunk[0].lower() for keyword in ['laptop', 'headphone', 'tablet', 'smartphone', 'price', 'battery']):
key_interactions.append(chunk[0])
summary = f"Conversation Summary:\n"
if 'product_inquiry' in themes:
summary += "β€’ Customer inquired about various products such as laptops, headphones, smartphones, or tablets.\n"
if 'pricing' in themes:
summary += "β€’ Price, cost, and available discounts were discussed.\n"
if 'negotiation' in themes:
summary += "β€’ Customer and seller discussed payment plans, financing options, or special deals.\n"
if 'compatibility' in themes:
summary += "β€’ Compatibility of the product with different systems or accessories was explored.\n"
if 'accessories' in themes:
summary += "β€’ Customer showed interest in additional accessories for the product.\n"
summary += f"\nConversation Sentiment:\n"
summary += f"β€’ Positive Interactions: {positive_count}\n"
summary += f"β€’ Negative Interactions: {negative_count}\n"
summary += f"β€’ Neutral Interactions: {neutral_count}\n"
summary += "\nKey Conversation Points:\n"
for interaction in key_interactions[:3]:
summary += f"β€’ {interaction}\n"
if positive_count > negative_count:
summary += "\nOutcome: Constructive and promising interaction with interest in the product."
elif negative_count > positive_count:
summary += "\nOutcome: Interaction may need further follow-up or clarification on product features."
else:
summary += "\nOutcome: Neutral interaction, potential for future engagement or inquiry."
return summary
def add_to_sentiment_history(text, sentiment_label, sentiment_score, closest_objection, response):
st.session_state.sentiment_history.append({
"Text": text,
"Sentiment": sentiment_label,
"Score": sentiment_score,
})
def show_help():
st.title("Help Section - AI-Powered Assistant for Live Sales Calls")
st.header("1. Introduction to the AI Assistant")
st.write("""
- *What It Does*: The assistant analyzes live sales calls in real-time. It detects sentiment shifts, provides product recommendations, and suggests dynamic question handling techniques.
- *Key Features*:
- Real-time speech-to-text conversion and sentiment analysis.
- Product recommendations based on customer context.
- Dynamic question prompt generator.
- Objection handling suggestions.
""")
st.header("2. Getting Started")
st.write("""
- *How to Start a Call*: To start a sales call, Click on Start Listening. Once connected, initiate the call, and the assistant will begin analyzing.
- *What to Expect*: During the call, the assistant will provide real-time feedback, such as sentiment scores, product recommendations, and objection handling tips.
""")
st.header("3. Using the Assistant During Sales Calls")
st.write("""
- *Speech-to-Text Instructions*: Speak clearly into your microphone for the assistant to accurately capture and analyze your speech.
- *Real-time Feedback*: The assistant will display real-time feedback on the sentiment of the conversation, suggest responses for objections, and provide product recommendations.
""")
st.header("4. Understanding the Interface")
st.write("""
- *Tabs Navigation*: The interface has different tabs:
- *Call Summary*: After the call, review the summary, which highlights conversation key points.
- *Sentiment Analysis*: See how the sentiment changed throughout the conversation.
- *Product Recommendations*: View the recommended products based on customer intent and conversation context.
""")
st.header("5. FAQs and Troubleshooting")
st.write("""
- *Sentiment Detection Accuracy*: If the assistant's sentiment analysis isn't accurate, ensure you speak clearly and avoid background noise.
- *Speech Recognition Issues*: Rephrase unclear statements and ensure the microphone is working well.
- *Context Handling*: If the assistant misses some context, remind it of the product or the customer’s intent.
""")
st.header("6. Support and Contact Information")
st.write("""
- *Live Chat Support*: Chat with us in real-time by clicking the support icon in the bottom right.
- *Email and Phone Support*: You can also reach us at [email protected] or call us at +1-800-555-1234.
- *Feedback*: Please provide feedback to help us improve the assistant.
""")
st.header("7. Advanced Features")
st.write("""
- *Integration with CRM and Google Sheets*: Sync with CRM systems and Google Sheets to enhance product recommendations.
- *Customization Options*: Customize the assistant’s tone, product categories, and question prompts through the settings tab.
""")
st.header("8. Privacy and Security")
st.write("""
- *Data Privacy*: All conversations are anonymized for analysis purposes. We ensure compliance with privacy regulations.
- *Security Protocols*: All data is encrypted and stored securely.
""")
st.header("9. Updates and New Features")
st.write("""
- *Changelog*: We release regular updates to improve performance. Please refer to the changelog for new features and improvements.
- *How to Update*: If an update is available, follow the instructions in the settings tab to install the latest version.
""")
def calculate_overall_sentiment(sentiment_scores):
if sentiment_scores:
average_sentiment = sum(sentiment_scores) / len(sentiment_scores)
overall_sentiment = (
"POSITIVE" if average_sentiment > 0 else
"NEGATIVE" if average_sentiment < 0 else
"NEUTRAL"
)
else:
overall_sentiment = "NEUTRAL"
return overall_sentiment
# def process_real_time_audio():
# recognizer = sr.Recognizer()
# microphone = sr.Microphone()
# st.write("Adjusting microphone for ambient noise... Please wait.")
# with microphone as source:
# recognizer.adjust_for_ambient_noise(source,duration=2)
# st.write("Listening for audio... Speak into the microphone.")
# while True:
# try:
# with microphone as source:
# audio = recognizer.listen(source, timeout=15, phrase_time_limit=20)
# st.write("Transcribing audio...")
# transcribed_text = recognizer.recognize_google(audio)
# st.write(f"You said: {transcribed_text}")
# if 'stop' in transcribed_text.lower():
# st.warning("Stopping the speech recognition process.")
# break
# st.markdown("### *Sentiment Analysis*")
# sentiment_label, sentiment_score = analyze_sentiment(transcribed_text)
# st.write(f"Sentiment: {sentiment_label}")
# st.write(f"Sentiment Score: {sentiment_score}")
# closest_objection = None
# response = None
# add_to_sentiment_history(transcribed_text, sentiment_label, sentiment_score, closest_objection, response)
# st.markdown("### *Recommendations*")
# recommendations = query_crm_data_with_context(transcribed_text)
# for i, rec in enumerate(recommendations, start=1):
# if isinstance(rec, dict) and 'Product' in rec and 'Recommendations' in rec:
# st.markdown(f"- *{rec['Product']}*: {rec['Recommendations']}")
# else:
# st.markdown(f"- {rec}")
# st.markdown("### *Objection Handling*")
# closest_objection, response = find_closest_objection(transcribed_text)
# st.write(f"Objection: {closest_objection}")
# st.write(f" Response: {response}")
# update_google_sheet(
# transcribed_text=transcribed_text,
# sentiment=f"{sentiment_label} ({sentiment_score})",
# objection=f"Objection: {closest_objection} | Response: {response}",
# recommendations=str(recommendations),
# overall_sentiment=f"{sentiment_label}"
# )
# except sr.UnknownValueError:
# st.warning("Could not understand the audio.")
# except Exception as e:
# st.error(f"Error: {e}")
# break
model = whisper.load_model("base")
# Queue for streaming audio
audio_queue = queue.Queue()
def audio_callback(indata, frames, time, status):
"""Callback function to continuously receive audio chunks."""
if status:
st.warning(f"Audio Status: {status}")
audio_queue.put(indata.copy())
def transcribe_audio_stream():
"""Continuously captures microphone input, transcribes, and processes the speech."""
samplerate = 16000
duration = 5
# device_index = 0
with sd.InputStream(samplerate=samplerate, channels=1, callback=audio_callback):
st.write("Listening... Speak into the microphone.")
while True:
try:
# Collect audio chunks
audio_chunk = []
for _ in range(int(samplerate / 1024 * duration)): # Collect chunks for `duration` seconds
audio_chunk.append(audio_queue.get())
# Convert to NumPy array
audio_data = np.concatenate(audio_chunk, axis=0)
# Save the chunk as a temporary WAV file
with tempfile.NamedTemporaryFile(delete=True, suffix=".wav") as temp_audio:
wav.write(temp_audio.name, samplerate, np.int16(audio_data * 32767))
# Transcribe using Whisper
result = model.transcribe(temp_audio.name)
transcribed_text = result["text"]
st.write(f"You said: {transcribed_text}")
if 'stop' in transcribed_text.lower():
st.warning("Stopping speech recognition.")
break
# Sentiment Analysis
st.markdown("### *Sentiment Analysis*")
sentiment_label, sentiment_score = analyze_sentiment(transcribed_text)
st.write(f"Sentiment: {sentiment_label}")
st.write(f"Sentiment Score: {sentiment_score}")
# Add to history
add_to_sentiment_history(transcribed_text, sentiment_label, sentiment_score, None, None)
# Recommendations
st.markdown("### *Recommendations*")
recommendations = query_crm_data_with_context(transcribed_text)
for rec in recommendations:
if isinstance(rec, dict) and 'Product' in rec and 'Recommendations' in rec:
st.markdown(f"- *{rec['Product']}*: {rec['Recommendations']}")
else:
st.markdown(f"- {rec}")
# Objection Handling
st.markdown("### *Objection Handling*")
closest_objection, response = find_closest_objection(transcribed_text)
st.write(f"Objection: {closest_objection}")
st.write(f"Response: {response}")
# Update Google Sheets
update_google_sheet(
transcribed_text=transcribed_text,
sentiment=f"{sentiment_label} ({sentiment_score})",
objection=f"Objection: {closest_objection} | Response: {response}",
recommendations=str(recommendations),
overall_sentiment=f"{sentiment_label}"
)
except Exception as e:
st.error(f"Error: {e}")
break
def generate_sentiment_pie_chart(sentiment_history):
if not sentiment_history:
st.warning("No sentiment history available to generate a pie chart.")
return
sentiment_counts = {
"Positive": 0,
"Negative": 0,
"Neutral": 0
}
for entry in sentiment_history:
sentiment = entry["Sentiment"].capitalize()
if sentiment in sentiment_counts:
sentiment_counts[sentiment] += 1
else:
st.warning(f"Unknown sentiment encountered: {entry['Sentiment']}")
labels = list(sentiment_counts.keys())
sizes = list(sentiment_counts.values())
colors = ['#6dcf6d', '#f76c6c', '#6c8df7']
fig, ax = plt.subplots()
plt.figure(figsize=(6,6))
ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90, colors=colors,textprops={'fontsize':12, 'color':'white'})
fig.patch.set_facecolor('none')
ax.axis('equal')
st.markdown("### Sentiment Distribution")
st.pyplot(fig)
def generate_post_call_summary(sentiment_history, recommendations=[]):
if not sentiment_history:
st.warning("No sentiment history available to summarize.")
return
df = pd.DataFrame(sentiment_history)
st.write(df)
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
combined_text = " ".join([item["Text"] for item in sentiment_history])
scores = [item["Score"] for item in sentiment_history]
st.markdown("## Summary of the Call")
chunks = [(entry["Text"], entry["Sentiment"]) for entry in sentiment_history]
summary = generate_comprehensive_summary(chunks)
st.write(summary)
st.markdown("### *Overall Sentiment for the Call*")
sentiment_scores = [entry["Score"] for entry in sentiment_history]
overall_sentiment = calculate_overall_sentiment(sentiment_scores)
st.write(f"Overall Sentiment: {overall_sentiment}")
col1,col2=st.columns(2)
with col1:
colors = ['green' if entry["Sentiment"] == "Positive" else 'red' if entry["Sentiment"] == "Negative" else 'blue' for entry in sentiment_history]
plt.figure(figsize=(10, 6))
plt.bar(range(len(sentiment_scores)), sentiment_scores, color=colors)
plt.axhline(0, color='black', linestyle='--', linewidth=1, label='Neutral')
st.markdown("### *Sentiment Trend Bar Chart*")
plt.title("Sentiment Trend Throughout the Call")
plt.xlabel("Segment")
plt.ylabel("Sentiment Score")
plt.legend(["Neutral"])
plt.grid(axis='y', linestyle='--', linewidth=0.7)
st.pyplot(plt)
with col2:
generate_sentiment_pie_chart(sentiment_history)
st.markdown("### *Future Insights*")
if overall_sentiment == "Negative":
st.write("Consider addressing customer pain points more directly. More empathy might improve the sentiment.")
elif overall_sentiment == "Positive":
st.write("Great engagement! Continue the positive experience by offering more personalized recommendations.")
else:
st.write("The call was neutral. Identifying specific customer concerns can help drive a more positive outcome.")
if recommendations:
st.write("### *Product Recommendations*")
for rec in recommendations:
st.write(f"- {rec}")
if sentiment_history:
st.write("### *Sentiment Breakdown by Segment*")
for idx, entry in enumerate(sentiment_history, 1):
st.write(f"Segment {idx}: Sentiment = {entry['Sentiment']}, Score = {entry['Score']:.2f}")
def main():
st.title("πŸ€– RealTime AI-Powered Sales Assistant For Enhanced Conversation")
st.markdown(
"An intelligent assistant to analyze speech, handle objections, and recommend products in real-time."
)
tabs = st.tabs(["πŸŽ™ Real-Time Audio", "πŸ“Š Text Search ", "πŸ“‹ Visualization","πŸ•˜ Query History","❓Help","πŸ’¬ Feedback"])
with tabs[0]:
st.header("πŸŽ™ Real-Time Audio Analysis")
st.write(
"Use this feature to analyze live speech, perform sentiment analysis, and get product recommendations."
)
if st.button("Start Listening"):
transcribe_audio_stream()
with tabs[1]:
st.header("πŸ“Š Search")
st.write(
"Retrieve the most relevant product recommendations based on your input query."
)
query = st.text_input("Enter your query:")
recommendations=[]
if st.button("Submit Query"):
if query:
result = query_crm_data_with_context(query)
st.success(f"Query submitted: {query}")
if result:
recommendations = result
st.markdown("### Recommendations")
for i, rec in enumerate(recommendations, start=1):
st.markdown(f"- {rec}")
else:
st.error("Please enter a query!")
st.session_state["crm_history"].append({"Query": query, "Result": recommendations})
with tabs[2]:
st.header("πŸ“Š Dashboard")
st.write("Visualize the sentiment analysis results.")
generate_post_call_summary(st.session_state.sentiment_history)
with tabs[3]:
st.subheader("πŸ•˜ Query History")
if "crm_history" in st.session_state and st.session_state["crm_history"]:
st.subheader("Query History")
st.dataframe(st.session_state["crm_history"])
with tabs[4]:
show_help()
with tabs[5]:
st.subheader("πŸ’¬ App Feedback")
feedback = st.text_area("We would love to hear your feedback on the app! Please share your thoughts:")
if st.button("Submit Feedback") and feedback:
st.session_state["app_feedback"].append(feedback)
st.success("Thank you for your feedback!")
if st.session_state["app_feedback"]:
st.write("### Previous Feedback:")
for idx, feedback_entry in enumerate(st.session_state["app_feedback"], 1):
st.markdown(f"{idx}. {feedback_entry}")
else:
st.warning("No feedback submitted yet.")
file_path = csv_file_path
data = load_csv(file_path)
if __name__ == "__main__":
main()