Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import jax | |
| from diffusers import FlaxStableDiffusionPipeline | |
| pipeline, pipeline_params = FlaxStableDiffusionPipeline.from_pretrained( | |
| "bguisard/stable-diffusion-nano", | |
| ) | |
| def generate_image(prompt: str, inference_steps: int = 30, prng_seed: int = 0): | |
| rng = jax.random.PRNGKey(int(prng_seed)) | |
| rng = jax.random.split(rng, jax.device_count()) | |
| p_params = replicate(params) | |
| num_samples = 1 | |
| prompt_ids = pipeline.prepare_inputs([prompt] * num_samples) | |
| prompt_ids = shard(prompt_ids) | |
| images = pipeline( | |
| prompt_ids=prompt_ids, | |
| params=p_params, | |
| prng_seed=rng, | |
| height=128, | |
| width=128, | |
| num_inference_steps=int(inference_steps), | |
| jit=True, | |
| ).images | |
| images = images.reshape((num_samples,) + output.shape[-3:]) | |
| images = pipeline.numpy_to_pil(images) | |
| return images | |
| prompt_input = gr.inputs.Textbox( | |
| label="Prompt", placeholder="A watercolor painting of a bird" | |
| ) | |
| inf_steps_input = gr.inputs.Slider( | |
| minimum=1, maximum=100, default=30, step=1, label="Inference Steps" | |
| ) | |
| seed_input = gr.inputs.Number(default=0, label="Seed") | |
| app = gr.Interface( | |
| fn=generate_image, | |
| inputs=[prompt_input, inf_steps_input, seed_input], | |
| outputs=gr.Image(shape=(128, 128)), | |
| title="Stable Diffusion Nano", | |
| description=( | |
| "Based on stable diffusion and fine-tuned on 128x128 images, " | |
| "Stable Diffusion Nano allows for fast prototyping of diffusion models, " | |
| "enabling quick experimentation with easily available hardware." | |
| ), | |
| examples=[["A watercolor painting of a bird", 30, 0]], | |
| ) | |
| app.launch() | |