Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +302 -0
- requirements.txt +16 -0
app.py
ADDED
|
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
sys.path.append('../')
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import random
|
| 6 |
+
import numpy as np
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
import gradio as gr
|
| 10 |
+
from huggingface_hub import hf_hub_download
|
| 11 |
+
from transformers import AutoModelForImageSegmentation
|
| 12 |
+
from torchvision import transforms
|
| 13 |
+
|
| 14 |
+
from pipeline import InstantCharacterFluxPipeline
|
| 15 |
+
|
| 16 |
+
# global variable
|
| 17 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
+
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
|
| 20 |
+
|
| 21 |
+
# pre-trained weights
|
| 22 |
+
ip_adapter_path = hf_hub_download(repo_id="InstantX/InstantCharacter", filename="instantcharacter_ip-adapter.bin")
|
| 23 |
+
base_model = 'black-forest-labs/FLUX.1-dev'
|
| 24 |
+
image_encoder_path = 'google/siglip-so400m-patch14-384'
|
| 25 |
+
image_encoder_2_path = 'facebook/dinov2-giant'
|
| 26 |
+
birefnet_path = 'ZhengPeng7/BiRefNet'
|
| 27 |
+
makoto_style_lora_path = hf_hub_download(repo_id="InstantX/FLUX.1-dev-LoRA-Makoto-Shinkai", filename="Makoto_Shinkai_style.safetensors")
|
| 28 |
+
ghibli_style_lora_path = hf_hub_download(repo_id="InstantX/FLUX.1-dev-LoRA-Ghibli", filename="ghibli_style.safetensors")
|
| 29 |
+
|
| 30 |
+
# init InstantCharacter pipeline
|
| 31 |
+
pipe = InstantCharacterFluxPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
| 32 |
+
pipe.to(device)
|
| 33 |
+
|
| 34 |
+
# load InstantCharacter
|
| 35 |
+
pipe.init_adapter(
|
| 36 |
+
image_encoder_path=image_encoder_path,
|
| 37 |
+
image_encoder_2_path=image_encoder_2_path,
|
| 38 |
+
subject_ipadapter_cfg=dict(subject_ip_adapter_path=ip_adapter_path, nb_token=1024),
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
# load matting model
|
| 42 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(birefnet_path, trust_remote_code=True)
|
| 43 |
+
birefnet.to('cuda')
|
| 44 |
+
birefnet.eval()
|
| 45 |
+
birefnet_transform_image = transforms.Compose([
|
| 46 |
+
transforms.Resize((1024, 1024)),
|
| 47 |
+
transforms.ToTensor(),
|
| 48 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 49 |
+
])
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def remove_bkg(subject_image):
|
| 53 |
+
|
| 54 |
+
def infer_matting(img_pil):
|
| 55 |
+
input_images = birefnet_transform_image(img_pil).unsqueeze(0).to('cuda')
|
| 56 |
+
|
| 57 |
+
with torch.no_grad():
|
| 58 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
| 59 |
+
pred = preds[0].squeeze()
|
| 60 |
+
pred_pil = transforms.ToPILImage()(pred)
|
| 61 |
+
mask = pred_pil.resize(img_pil.size)
|
| 62 |
+
mask = np.array(mask)
|
| 63 |
+
mask = mask[..., None]
|
| 64 |
+
return mask
|
| 65 |
+
|
| 66 |
+
def get_bbox_from_mask(mask, th=128):
|
| 67 |
+
height, width = mask.shape[:2]
|
| 68 |
+
x1, y1, x2, y2 = 0, 0, width - 1, height - 1
|
| 69 |
+
|
| 70 |
+
sample = np.max(mask, axis=0)
|
| 71 |
+
for idx in range(width):
|
| 72 |
+
if sample[idx] >= th:
|
| 73 |
+
x1 = idx
|
| 74 |
+
break
|
| 75 |
+
|
| 76 |
+
sample = np.max(mask[:, ::-1], axis=0)
|
| 77 |
+
for idx in range(width):
|
| 78 |
+
if sample[idx] >= th:
|
| 79 |
+
x2 = width - 1 - idx
|
| 80 |
+
break
|
| 81 |
+
|
| 82 |
+
sample = np.max(mask, axis=1)
|
| 83 |
+
for idx in range(height):
|
| 84 |
+
if sample[idx] >= th:
|
| 85 |
+
y1 = idx
|
| 86 |
+
break
|
| 87 |
+
|
| 88 |
+
sample = np.max(mask[::-1], axis=1)
|
| 89 |
+
for idx in range(height):
|
| 90 |
+
if sample[idx] >= th:
|
| 91 |
+
y2 = height - 1 - idx
|
| 92 |
+
break
|
| 93 |
+
|
| 94 |
+
x1 = np.clip(x1, 0, width-1).round().astype(np.int32)
|
| 95 |
+
y1 = np.clip(y1, 0, height-1).round().astype(np.int32)
|
| 96 |
+
x2 = np.clip(x2, 0, width-1).round().astype(np.int32)
|
| 97 |
+
y2 = np.clip(y2, 0, height-1).round().astype(np.int32)
|
| 98 |
+
|
| 99 |
+
return [x1, y1, x2, y2]
|
| 100 |
+
|
| 101 |
+
def pad_to_square(image, pad_value = 255, random = False):
|
| 102 |
+
'''
|
| 103 |
+
image: np.array [h, w, 3]
|
| 104 |
+
'''
|
| 105 |
+
H,W = image.shape[0], image.shape[1]
|
| 106 |
+
if H == W:
|
| 107 |
+
return image
|
| 108 |
+
|
| 109 |
+
padd = abs(H - W)
|
| 110 |
+
if random:
|
| 111 |
+
padd_1 = int(np.random.randint(0,padd))
|
| 112 |
+
else:
|
| 113 |
+
padd_1 = int(padd / 2)
|
| 114 |
+
padd_2 = padd - padd_1
|
| 115 |
+
|
| 116 |
+
if H > W:
|
| 117 |
+
pad_param = ((0,0),(padd_1,padd_2),(0,0))
|
| 118 |
+
else:
|
| 119 |
+
pad_param = ((padd_1,padd_2),(0,0),(0,0))
|
| 120 |
+
|
| 121 |
+
image = np.pad(image, pad_param, 'constant', constant_values=pad_value)
|
| 122 |
+
return image
|
| 123 |
+
|
| 124 |
+
salient_object_mask = infer_matting(subject_image)[..., 0]
|
| 125 |
+
x1, y1, x2, y2 = get_bbox_from_mask(salient_object_mask)
|
| 126 |
+
subject_image = np.array(subject_image)
|
| 127 |
+
salient_object_mask[salient_object_mask > 128] = 255
|
| 128 |
+
salient_object_mask[salient_object_mask < 128] = 0
|
| 129 |
+
sample_mask = np.concatenate([salient_object_mask[..., None]]*3, axis=2)
|
| 130 |
+
obj_image = sample_mask / 255 * subject_image + (1 - sample_mask / 255) * 255
|
| 131 |
+
crop_obj_image = obj_image[y1:y2, x1:x2]
|
| 132 |
+
crop_pad_obj_image = pad_to_square(crop_obj_image, 255)
|
| 133 |
+
subject_image = Image.fromarray(crop_pad_obj_image.astype(np.uint8))
|
| 134 |
+
return subject_image
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 138 |
+
if randomize_seed:
|
| 139 |
+
seed = random.randint(0, MAX_SEED)
|
| 140 |
+
return seed
|
| 141 |
+
|
| 142 |
+
def get_example():
|
| 143 |
+
case = [
|
| 144 |
+
[
|
| 145 |
+
"./assets/girl.jpg",
|
| 146 |
+
"A girl is playing a guitar in street",
|
| 147 |
+
0.9,
|
| 148 |
+
'Makoto Shinkai style',
|
| 149 |
+
],
|
| 150 |
+
[
|
| 151 |
+
"./assets/boy.jpg",
|
| 152 |
+
"A boy is riding a bike in snow",
|
| 153 |
+
0.9,
|
| 154 |
+
'Makoto Shinkai style',
|
| 155 |
+
],
|
| 156 |
+
]
|
| 157 |
+
return case
|
| 158 |
+
|
| 159 |
+
def run_for_examples(source_image, prompt, scale, style_mode):
|
| 160 |
+
|
| 161 |
+
return create_image(
|
| 162 |
+
input_image=source_image,
|
| 163 |
+
prompt=prompt,
|
| 164 |
+
scale=scale,
|
| 165 |
+
guidance_scale=3.5,
|
| 166 |
+
num_inference_steps=28,
|
| 167 |
+
seed=123456,
|
| 168 |
+
style_mode=style_mode,
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
def create_image(input_image,
|
| 172 |
+
prompt,
|
| 173 |
+
scale,
|
| 174 |
+
guidance_scale,
|
| 175 |
+
num_inference_steps,
|
| 176 |
+
seed,
|
| 177 |
+
style_mode=None):
|
| 178 |
+
|
| 179 |
+
input_image = remove_bkg(input_image)
|
| 180 |
+
|
| 181 |
+
if style_mode is None:
|
| 182 |
+
images = pipe(
|
| 183 |
+
prompt=prompt,
|
| 184 |
+
num_inference_steps=num_inference_steps,
|
| 185 |
+
guidance_scale=guidance_scale,
|
| 186 |
+
width=1024,
|
| 187 |
+
height=1024,
|
| 188 |
+
subject_image=input_image,
|
| 189 |
+
subject_scale=scale,
|
| 190 |
+
generator=torch.manual_seed(seed),
|
| 191 |
+
).images
|
| 192 |
+
else:
|
| 193 |
+
if style_mode == 'Makoto Shinkai style':
|
| 194 |
+
lora_file_path = makoto_style_lora_path
|
| 195 |
+
trigger = 'Makoto Shinkai style'
|
| 196 |
+
elif style_mode == 'Ghibli style':
|
| 197 |
+
lora_file_path = ghibli_style_lora_path
|
| 198 |
+
trigger = 'ghibli style'
|
| 199 |
+
|
| 200 |
+
images = pipe.with_style_lora(
|
| 201 |
+
lora_file_path=lora_file_path,
|
| 202 |
+
trigger=trigger,
|
| 203 |
+
prompt=prompt,
|
| 204 |
+
num_inference_steps=num_inference_steps,
|
| 205 |
+
guidance_scale=guidance_scale,
|
| 206 |
+
width=1024,
|
| 207 |
+
height=1024,
|
| 208 |
+
subject_image=input_image,
|
| 209 |
+
subject_scale=scale,
|
| 210 |
+
generator=torch.manual_seed(seed),
|
| 211 |
+
).images
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
return images
|
| 215 |
+
|
| 216 |
+
# Description
|
| 217 |
+
title = r"""
|
| 218 |
+
<h1 align="center">InstantCharacter : Personalize Any Characters with a Scalable Diffusion Transformer Framework</h1>
|
| 219 |
+
"""
|
| 220 |
+
|
| 221 |
+
description = r"""
|
| 222 |
+
<b>Official 🤗 Gradio demo</b> for <a href='https://instantcharacter.github.io/' target='_blank'><b>InstantCharacter : Personalize Any Characters with a Scalable Diffusion Transformer Framework</b></a>.<br>
|
| 223 |
+
How to use:<br>
|
| 224 |
+
1. Upload a character image, removing background would be preferred.
|
| 225 |
+
2. Enter a text prompt to describe what you hope the chracter does.
|
| 226 |
+
3. Click the <b>Submit</b> button to begin customization.
|
| 227 |
+
4. Share your custimized photo with your friends and enjoy! 😊
|
| 228 |
+
"""
|
| 229 |
+
|
| 230 |
+
article = r"""
|
| 231 |
+
---
|
| 232 |
+
📝 **Citation**
|
| 233 |
+
<br>
|
| 234 |
+
If our work is helpful for your research or applications, please cite us via:
|
| 235 |
+
```bibtex
|
| 236 |
+
TBD
|
| 237 |
+
```
|
| 238 |
+
📧 **Contact**
|
| 239 |
+
<br>
|
| 240 |
+
If you have any questions, please feel free to open an issue.
|
| 241 |
+
"""
|
| 242 |
+
|
| 243 |
+
block = gr.Blocks(css="footer {visibility: hidden}").queue(max_size=10, api_open=False)
|
| 244 |
+
with block:
|
| 245 |
+
|
| 246 |
+
# description
|
| 247 |
+
gr.Markdown(title)
|
| 248 |
+
gr.Markdown(description)
|
| 249 |
+
|
| 250 |
+
with gr.Tabs():
|
| 251 |
+
with gr.Row():
|
| 252 |
+
with gr.Column():
|
| 253 |
+
|
| 254 |
+
with gr.Row():
|
| 255 |
+
with gr.Column():
|
| 256 |
+
image_pil = gr.Image(label="Source Image", type='pil')
|
| 257 |
+
|
| 258 |
+
prompt = gr.Textbox(label="Prompt", value="a character is riding a bike in snow")
|
| 259 |
+
|
| 260 |
+
scale = gr.Slider(minimum=0, maximum=1.5, step=0.01,value=1.0, label="Scale")
|
| 261 |
+
style_mode = gr.Dropdown(label='Style', choices=[None, 'Makoto Shinkai style', 'Ghibli style'], value=None)
|
| 262 |
+
|
| 263 |
+
with gr.Accordion(open=False, label="Advanced Options"):
|
| 264 |
+
guidance_scale = gr.Slider(minimum=1,maximum=7.0, step=0.01,value=3.5, label="guidance scale")
|
| 265 |
+
num_inference_steps = gr.Slider(minimum=5,maximum=50.0, step=1.0,value=28, label="num inference steps")
|
| 266 |
+
seed = gr.Slider(minimum=-1000000, maximum=1000000, value=123456, step=1, label="Seed Value")
|
| 267 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 268 |
+
|
| 269 |
+
generate_button = gr.Button("Generate Image")
|
| 270 |
+
|
| 271 |
+
with gr.Column():
|
| 272 |
+
generated_image = gr.Gallery(label="Generated Image")
|
| 273 |
+
|
| 274 |
+
generate_button.click(
|
| 275 |
+
fn=randomize_seed_fn,
|
| 276 |
+
inputs=[seed, randomize_seed],
|
| 277 |
+
outputs=seed,
|
| 278 |
+
queue=False,
|
| 279 |
+
api_name=False,
|
| 280 |
+
).then(
|
| 281 |
+
fn=create_image,
|
| 282 |
+
inputs=[image_pil,
|
| 283 |
+
prompt,
|
| 284 |
+
scale,
|
| 285 |
+
guidance_scale,
|
| 286 |
+
num_inference_steps,
|
| 287 |
+
seed,
|
| 288 |
+
style_mode,
|
| 289 |
+
],
|
| 290 |
+
outputs=[generated_image])
|
| 291 |
+
|
| 292 |
+
gr.Examples(
|
| 293 |
+
examples=get_example(),
|
| 294 |
+
inputs=[image_pil, prompt, scale, style_mode],
|
| 295 |
+
fn=run_for_examples,
|
| 296 |
+
outputs=[generated_image],
|
| 297 |
+
cache_examples=True,
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
gr.Markdown(article)
|
| 301 |
+
|
| 302 |
+
block.launch(server_name="0.0.0.0", server_port=80)
|
requirements.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
diffusers>=0.32.2
|
| 2 |
+
torch>=2.0.0
|
| 3 |
+
torchvision>=0.15.1
|
| 4 |
+
transformers>=4.37.1
|
| 5 |
+
accelerate
|
| 6 |
+
safetensors
|
| 7 |
+
einops
|
| 8 |
+
spaces>=0.19.4
|
| 9 |
+
omegaconf
|
| 10 |
+
peft
|
| 11 |
+
huggingface-hub>=0.20.2
|
| 12 |
+
opencv-python
|
| 13 |
+
gradio
|
| 14 |
+
controlnet_aux
|
| 15 |
+
gdown
|
| 16 |
+
peft
|