sienna223's picture
init
119e1fd
from typing import List, Tuple
import torch
import torch.nn as nn
from einops import repeat
from diffusers.models.embeddings import get_1d_rotary_pos_embed
class OmniGen2RotaryPosEmbed(nn.Module):
def __init__(self, theta: int,
axes_dim: Tuple[int, int, int],
axes_lens: Tuple[int, int, int] = (300, 512, 512),
patch_size: int = 2):
super().__init__()
self.theta = theta
self.axes_dim = axes_dim
self.axes_lens = axes_lens
self.patch_size = patch_size
@staticmethod
def get_freqs_cis(axes_dim: Tuple[int, int, int],
axes_lens: Tuple[int, int, int],
theta: int) -> List[torch.Tensor]:
freqs_cis = []
freqs_dtype = torch.float32 if torch.backends.mps.is_available() else torch.float64
for i, (d, e) in enumerate(zip(axes_dim, axes_lens)):
emb = get_1d_rotary_pos_embed(d, e, theta=theta, freqs_dtype=freqs_dtype)
freqs_cis.append(emb)
return freqs_cis
def _get_freqs_cis(self, freqs_cis, ids: torch.Tensor) -> torch.Tensor:
device = ids.device
if ids.device.type == "mps":
ids = ids.to("cpu")
result = []
for i in range(len(self.axes_dim)):
freqs = freqs_cis[i].to(ids.device)
index = ids[:, :, i : i + 1].repeat(1, 1, freqs.shape[-1]).to(torch.int64)
result.append(torch.gather(freqs.unsqueeze(0).repeat(index.shape[0], 1, 1), dim=1, index=index))
return torch.cat(result, dim=-1).to(device)
def forward(
self,
freqs_cis,
attention_mask,
l_effective_ref_img_len,
l_effective_img_len,
ref_img_sizes,
img_sizes,
device
):
batch_size = len(attention_mask)
p = self.patch_size
encoder_seq_len = attention_mask.shape[1]
l_effective_cap_len = attention_mask.sum(dim=1).tolist()
seq_lengths = [cap_len + sum(ref_img_len) + img_len for cap_len, ref_img_len, img_len in zip(l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len)]
max_seq_len = max(seq_lengths)
max_ref_img_len = max([sum(ref_img_len) for ref_img_len in l_effective_ref_img_len])
max_img_len = max(l_effective_img_len)
# Create position IDs
position_ids = torch.zeros(batch_size, max_seq_len, 3, dtype=torch.int32, device=device)
for i, (cap_seq_len, seq_len) in enumerate(zip(l_effective_cap_len, seq_lengths)):
# add text position ids
position_ids[i, :cap_seq_len] = repeat(torch.arange(cap_seq_len, dtype=torch.int32, device=device), "l -> l 3")
pe_shift = cap_seq_len
pe_shift_len = cap_seq_len
if ref_img_sizes[i] is not None:
for ref_img_size, ref_img_len in zip(ref_img_sizes[i], l_effective_ref_img_len[i]):
H, W = ref_img_size
ref_H_tokens, ref_W_tokens = H // p, W // p
assert ref_H_tokens * ref_W_tokens == ref_img_len
# add image position ids
row_ids = repeat(torch.arange(ref_H_tokens, dtype=torch.int32, device=device), "h -> h w", w=ref_W_tokens).flatten()
col_ids = repeat(torch.arange(ref_W_tokens, dtype=torch.int32, device=device), "w -> h w", h=ref_H_tokens).flatten()
position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 0] = pe_shift
position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 1] = row_ids
position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 2] = col_ids
pe_shift += max(ref_H_tokens, ref_W_tokens)
pe_shift_len += ref_img_len
H, W = img_sizes[i]
H_tokens, W_tokens = H // p, W // p
assert H_tokens * W_tokens == l_effective_img_len[i]
row_ids = repeat(torch.arange(H_tokens, dtype=torch.int32, device=device), "h -> h w", w=W_tokens).flatten()
col_ids = repeat(torch.arange(W_tokens, dtype=torch.int32, device=device), "w -> h w", h=H_tokens).flatten()
assert pe_shift_len + l_effective_img_len[i] == seq_len
position_ids[i, pe_shift_len: seq_len, 0] = pe_shift
position_ids[i, pe_shift_len: seq_len, 1] = row_ids
position_ids[i, pe_shift_len: seq_len, 2] = col_ids
# Get combined rotary embeddings
freqs_cis = self._get_freqs_cis(freqs_cis, position_ids)
# create separate rotary embeddings for captions and images
cap_freqs_cis = torch.zeros(
batch_size, encoder_seq_len, freqs_cis.shape[-1], device=device, dtype=freqs_cis.dtype
)
ref_img_freqs_cis = torch.zeros(
batch_size, max_ref_img_len, freqs_cis.shape[-1], device=device, dtype=freqs_cis.dtype
)
img_freqs_cis = torch.zeros(
batch_size, max_img_len, freqs_cis.shape[-1], device=device, dtype=freqs_cis.dtype
)
for i, (cap_seq_len, ref_img_len, img_len, seq_len) in enumerate(zip(l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len, seq_lengths)):
cap_freqs_cis[i, :cap_seq_len] = freqs_cis[i, :cap_seq_len]
ref_img_freqs_cis[i, :sum(ref_img_len)] = freqs_cis[i, cap_seq_len:cap_seq_len + sum(ref_img_len)]
img_freqs_cis[i, :img_len] = freqs_cis[i, cap_seq_len + sum(ref_img_len):cap_seq_len + sum(ref_img_len) + img_len]
return (
cap_freqs_cis,
ref_img_freqs_cis,
img_freqs_cis,
freqs_cis,
l_effective_cap_len,
seq_lengths,
)