Spaces:
Runtime error
Runtime error
Update diffusers_helper/models/hunyuan_video_packed.py
Browse files- diffusers_helper/models/hunyuan_video_packed.py +1032 -1032
diffusers_helper/models/hunyuan_video_packed.py
CHANGED
|
@@ -1,1032 +1,1032 @@
|
|
| 1 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 2 |
-
|
| 3 |
-
import torch
|
| 4 |
-
import einops
|
| 5 |
-
import torch.nn as nn
|
| 6 |
-
import numpy as np
|
| 7 |
-
|
| 8 |
-
from diffusers.loaders import FromOriginalModelMixin
|
| 9 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 10 |
-
from diffusers.loaders import PeftAdapterMixin
|
| 11 |
-
from diffusers.utils import logging
|
| 12 |
-
from diffusers.models.attention import FeedForward
|
| 13 |
-
from diffusers.models.attention_processor import Attention
|
| 14 |
-
from diffusers.models.embeddings import TimestepEmbedding, Timesteps, PixArtAlphaTextProjection
|
| 15 |
-
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
| 16 |
-
from diffusers.models.modeling_utils import ModelMixin
|
| 17 |
-
from diffusers_helper.dit_common import LayerNorm
|
| 18 |
-
from diffusers_helper.utils import zero_module
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
enabled_backends = []
|
| 22 |
-
|
| 23 |
-
if torch.backends.cuda.flash_sdp_enabled():
|
| 24 |
-
enabled_backends.append("flash")
|
| 25 |
-
if torch.backends.cuda.math_sdp_enabled():
|
| 26 |
-
enabled_backends.append("math")
|
| 27 |
-
if torch.backends.cuda.mem_efficient_sdp_enabled():
|
| 28 |
-
enabled_backends.append("mem_efficient")
|
| 29 |
-
if torch.backends.cuda.cudnn_sdp_enabled():
|
| 30 |
-
enabled_backends.append("cudnn")
|
| 31 |
-
|
| 32 |
-
print("Currently enabled native sdp backends:", enabled_backends)
|
| 33 |
-
|
| 34 |
-
try:
|
| 35 |
-
# raise NotImplementedError
|
| 36 |
-
from xformers.ops import memory_efficient_attention as xformers_attn_func
|
| 37 |
-
print('Xformers is installed!')
|
| 38 |
-
except:
|
| 39 |
-
print('Xformers is not installed!')
|
| 40 |
-
xformers_attn_func = None
|
| 41 |
-
|
| 42 |
-
try:
|
| 43 |
-
# raise NotImplementedError
|
| 44 |
-
from flash_attn import flash_attn_varlen_func, flash_attn_func
|
| 45 |
-
print('Flash Attn is installed!')
|
| 46 |
-
except:
|
| 47 |
-
print('Flash Attn is not installed!')
|
| 48 |
-
flash_attn_varlen_func = None
|
| 49 |
-
flash_attn_func = None
|
| 50 |
-
|
| 51 |
-
try:
|
| 52 |
-
# raise NotImplementedError
|
| 53 |
-
from sageattention import sageattn_varlen, sageattn
|
| 54 |
-
print('Sage Attn is installed!')
|
| 55 |
-
except:
|
| 56 |
-
print('Sage Attn is not installed!')
|
| 57 |
-
sageattn_varlen = None
|
| 58 |
-
sageattn = None
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
def pad_for_3d_conv(x, kernel_size):
|
| 65 |
-
b, c, t, h, w = x.shape
|
| 66 |
-
pt, ph, pw = kernel_size
|
| 67 |
-
pad_t = (pt - (t % pt)) % pt
|
| 68 |
-
pad_h = (ph - (h % ph)) % ph
|
| 69 |
-
pad_w = (pw - (w % pw)) % pw
|
| 70 |
-
return torch.nn.functional.pad(x, (0, pad_w, 0, pad_h, 0, pad_t), mode='replicate')
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
def center_down_sample_3d(x, kernel_size):
|
| 74 |
-
# pt, ph, pw = kernel_size
|
| 75 |
-
# cp = (pt * ph * pw) // 2
|
| 76 |
-
# xp = einops.rearrange(x, 'b c (t pt) (h ph) (w pw) -> (pt ph pw) b c t h w', pt=pt, ph=ph, pw=pw)
|
| 77 |
-
# xc = xp[cp]
|
| 78 |
-
# return xc
|
| 79 |
-
return torch.nn.functional.avg_pool3d(x, kernel_size, stride=kernel_size)
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
def get_cu_seqlens(text_mask, img_len):
|
| 83 |
-
batch_size = text_mask.shape[0]
|
| 84 |
-
text_len = text_mask.sum(dim=1)
|
| 85 |
-
max_len = text_mask.shape[1] + img_len
|
| 86 |
-
|
| 87 |
-
cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")
|
| 88 |
-
|
| 89 |
-
for i in range(batch_size):
|
| 90 |
-
s = text_len[i] + img_len
|
| 91 |
-
s1 = i * max_len + s
|
| 92 |
-
s2 = (i + 1) * max_len
|
| 93 |
-
cu_seqlens[2 * i + 1] = s1
|
| 94 |
-
cu_seqlens[2 * i + 2] = s2
|
| 95 |
-
|
| 96 |
-
return cu_seqlens
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
def apply_rotary_emb_transposed(x, freqs_cis):
|
| 100 |
-
cos, sin = freqs_cis.unsqueeze(-2).chunk(2, dim=-1)
|
| 101 |
-
x_real, x_imag = x.unflatten(-1, (-1, 2)).unbind(-1)
|
| 102 |
-
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
| 103 |
-
out = x.float() * cos + x_rotated.float() * sin
|
| 104 |
-
out = out.to(x)
|
| 105 |
-
return out
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
def attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv):
|
| 109 |
-
if cu_seqlens_q is None and cu_seqlens_kv is None and max_seqlen_q is None and max_seqlen_kv is None:
|
| 110 |
-
if sageattn is not None:
|
| 111 |
-
x = sageattn(q, k, v, tensor_layout='NHD')
|
| 112 |
-
return x
|
| 113 |
-
|
| 114 |
-
if flash_attn_func is not None:
|
| 115 |
-
x = flash_attn_func(q, k, v)
|
| 116 |
-
return x
|
| 117 |
-
|
| 118 |
-
if xformers_attn_func is not None:
|
| 119 |
-
x = xformers_attn_func(q, k, v)
|
| 120 |
-
return x
|
| 121 |
-
|
| 122 |
-
x = torch.nn.functional.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)).transpose(1, 2)
|
| 123 |
-
return x
|
| 124 |
-
|
| 125 |
-
batch_size = q.shape[0]
|
| 126 |
-
q = q.view(q.shape[0] * q.shape[1], *q.shape[2:])
|
| 127 |
-
k = k.view(k.shape[0] * k.shape[1], *k.shape[2:])
|
| 128 |
-
v = v.view(v.shape[0] * v.shape[1], *v.shape[2:])
|
| 129 |
-
if sageattn_varlen is not None:
|
| 130 |
-
x = sageattn_varlen(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
| 131 |
-
elif flash_attn_varlen_func is not None:
|
| 132 |
-
x = flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
| 133 |
-
else:
|
| 134 |
-
raise NotImplementedError('No Attn Installed!')
|
| 135 |
-
x = x.view(batch_size, max_seqlen_q, *x.shape[2:])
|
| 136 |
-
return x
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
class HunyuanAttnProcessorFlashAttnDouble:
|
| 140 |
-
def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
|
| 141 |
-
cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
|
| 142 |
-
|
| 143 |
-
query = attn.to_q(hidden_states)
|
| 144 |
-
key = attn.to_k(hidden_states)
|
| 145 |
-
value = attn.to_v(hidden_states)
|
| 146 |
-
|
| 147 |
-
query = query.unflatten(2, (attn.heads, -1))
|
| 148 |
-
key = key.unflatten(2, (attn.heads, -1))
|
| 149 |
-
value = value.unflatten(2, (attn.heads, -1))
|
| 150 |
-
|
| 151 |
-
query = attn.norm_q(query)
|
| 152 |
-
key = attn.norm_k(key)
|
| 153 |
-
|
| 154 |
-
query = apply_rotary_emb_transposed(query, image_rotary_emb)
|
| 155 |
-
key = apply_rotary_emb_transposed(key, image_rotary_emb)
|
| 156 |
-
|
| 157 |
-
encoder_query = attn.add_q_proj(encoder_hidden_states)
|
| 158 |
-
encoder_key = attn.add_k_proj(encoder_hidden_states)
|
| 159 |
-
encoder_value = attn.add_v_proj(encoder_hidden_states)
|
| 160 |
-
|
| 161 |
-
encoder_query = encoder_query.unflatten(2, (attn.heads, -1))
|
| 162 |
-
encoder_key = encoder_key.unflatten(2, (attn.heads, -1))
|
| 163 |
-
encoder_value = encoder_value.unflatten(2, (attn.heads, -1))
|
| 164 |
-
|
| 165 |
-
encoder_query = attn.norm_added_q(encoder_query)
|
| 166 |
-
encoder_key = attn.norm_added_k(encoder_key)
|
| 167 |
-
|
| 168 |
-
query = torch.cat([query, encoder_query], dim=1)
|
| 169 |
-
key = torch.cat([key, encoder_key], dim=1)
|
| 170 |
-
value = torch.cat([value, encoder_value], dim=1)
|
| 171 |
-
|
| 172 |
-
hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
| 173 |
-
hidden_states = hidden_states.flatten(-2)
|
| 174 |
-
|
| 175 |
-
txt_length = encoder_hidden_states.shape[1]
|
| 176 |
-
hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
|
| 177 |
-
|
| 178 |
-
hidden_states = attn.to_out[0](hidden_states)
|
| 179 |
-
hidden_states = attn.to_out[1](hidden_states)
|
| 180 |
-
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
| 181 |
-
|
| 182 |
-
return hidden_states, encoder_hidden_states
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
class HunyuanAttnProcessorFlashAttnSingle:
|
| 186 |
-
def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
|
| 187 |
-
cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
|
| 188 |
-
|
| 189 |
-
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
| 190 |
-
|
| 191 |
-
query = attn.to_q(hidden_states)
|
| 192 |
-
key = attn.to_k(hidden_states)
|
| 193 |
-
value = attn.to_v(hidden_states)
|
| 194 |
-
|
| 195 |
-
query = query.unflatten(2, (attn.heads, -1))
|
| 196 |
-
key = key.unflatten(2, (attn.heads, -1))
|
| 197 |
-
value = value.unflatten(2, (attn.heads, -1))
|
| 198 |
-
|
| 199 |
-
query = attn.norm_q(query)
|
| 200 |
-
key = attn.norm_k(key)
|
| 201 |
-
|
| 202 |
-
txt_length = encoder_hidden_states.shape[1]
|
| 203 |
-
|
| 204 |
-
query = torch.cat([apply_rotary_emb_transposed(query[:, :-txt_length], image_rotary_emb), query[:, -txt_length:]], dim=1)
|
| 205 |
-
key = torch.cat([apply_rotary_emb_transposed(key[:, :-txt_length], image_rotary_emb), key[:, -txt_length:]], dim=1)
|
| 206 |
-
|
| 207 |
-
hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
| 208 |
-
hidden_states = hidden_states.flatten(-2)
|
| 209 |
-
|
| 210 |
-
hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
|
| 211 |
-
|
| 212 |
-
return hidden_states, encoder_hidden_states
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module):
|
| 216 |
-
def __init__(self, embedding_dim, pooled_projection_dim):
|
| 217 |
-
super().__init__()
|
| 218 |
-
|
| 219 |
-
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
| 220 |
-
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
| 221 |
-
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
| 222 |
-
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
|
| 223 |
-
|
| 224 |
-
def forward(self, timestep, guidance, pooled_projection):
|
| 225 |
-
timesteps_proj = self.time_proj(timestep)
|
| 226 |
-
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
|
| 227 |
-
|
| 228 |
-
guidance_proj = self.time_proj(guidance)
|
| 229 |
-
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype))
|
| 230 |
-
|
| 231 |
-
time_guidance_emb = timesteps_emb + guidance_emb
|
| 232 |
-
|
| 233 |
-
pooled_projections = self.text_embedder(pooled_projection)
|
| 234 |
-
conditioning = time_guidance_emb + pooled_projections
|
| 235 |
-
|
| 236 |
-
return conditioning
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
class CombinedTimestepTextProjEmbeddings(nn.Module):
|
| 240 |
-
def __init__(self, embedding_dim, pooled_projection_dim):
|
| 241 |
-
super().__init__()
|
| 242 |
-
|
| 243 |
-
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
| 244 |
-
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
| 245 |
-
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
|
| 246 |
-
|
| 247 |
-
def forward(self, timestep, pooled_projection):
|
| 248 |
-
timesteps_proj = self.time_proj(timestep)
|
| 249 |
-
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
|
| 250 |
-
|
| 251 |
-
pooled_projections = self.text_embedder(pooled_projection)
|
| 252 |
-
|
| 253 |
-
conditioning = timesteps_emb + pooled_projections
|
| 254 |
-
|
| 255 |
-
return conditioning
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
class HunyuanVideoAdaNorm(nn.Module):
|
| 259 |
-
def __init__(self, in_features: int, out_features: Optional[int] = None) -> None:
|
| 260 |
-
super().__init__()
|
| 261 |
-
|
| 262 |
-
out_features = out_features or 2 * in_features
|
| 263 |
-
self.linear = nn.Linear(in_features, out_features)
|
| 264 |
-
self.nonlinearity = nn.SiLU()
|
| 265 |
-
|
| 266 |
-
def forward(
|
| 267 |
-
self, temb: torch.Tensor
|
| 268 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 269 |
-
temb = self.linear(self.nonlinearity(temb))
|
| 270 |
-
gate_msa, gate_mlp = temb.chunk(2, dim=-1)
|
| 271 |
-
gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1)
|
| 272 |
-
return gate_msa, gate_mlp
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
class HunyuanVideoIndividualTokenRefinerBlock(nn.Module):
|
| 276 |
-
def __init__(
|
| 277 |
-
self,
|
| 278 |
-
num_attention_heads: int,
|
| 279 |
-
attention_head_dim: int,
|
| 280 |
-
mlp_width_ratio: str = 4.0,
|
| 281 |
-
mlp_drop_rate: float = 0.0,
|
| 282 |
-
attention_bias: bool = True,
|
| 283 |
-
) -> None:
|
| 284 |
-
super().__init__()
|
| 285 |
-
|
| 286 |
-
hidden_size = num_attention_heads * attention_head_dim
|
| 287 |
-
|
| 288 |
-
self.norm1 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
|
| 289 |
-
self.attn = Attention(
|
| 290 |
-
query_dim=hidden_size,
|
| 291 |
-
cross_attention_dim=None,
|
| 292 |
-
heads=num_attention_heads,
|
| 293 |
-
dim_head=attention_head_dim,
|
| 294 |
-
bias=attention_bias,
|
| 295 |
-
)
|
| 296 |
-
|
| 297 |
-
self.norm2 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
|
| 298 |
-
self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate)
|
| 299 |
-
|
| 300 |
-
self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size)
|
| 301 |
-
|
| 302 |
-
def forward(
|
| 303 |
-
self,
|
| 304 |
-
hidden_states: torch.Tensor,
|
| 305 |
-
temb: torch.Tensor,
|
| 306 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 307 |
-
) -> torch.Tensor:
|
| 308 |
-
norm_hidden_states = self.norm1(hidden_states)
|
| 309 |
-
|
| 310 |
-
attn_output = self.attn(
|
| 311 |
-
hidden_states=norm_hidden_states,
|
| 312 |
-
encoder_hidden_states=None,
|
| 313 |
-
attention_mask=attention_mask,
|
| 314 |
-
)
|
| 315 |
-
|
| 316 |
-
gate_msa, gate_mlp = self.norm_out(temb)
|
| 317 |
-
hidden_states = hidden_states + attn_output * gate_msa
|
| 318 |
-
|
| 319 |
-
ff_output = self.ff(self.norm2(hidden_states))
|
| 320 |
-
hidden_states = hidden_states + ff_output * gate_mlp
|
| 321 |
-
|
| 322 |
-
return hidden_states
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
class HunyuanVideoIndividualTokenRefiner(nn.Module):
|
| 326 |
-
def __init__(
|
| 327 |
-
self,
|
| 328 |
-
num_attention_heads: int,
|
| 329 |
-
attention_head_dim: int,
|
| 330 |
-
num_layers: int,
|
| 331 |
-
mlp_width_ratio: float = 4.0,
|
| 332 |
-
mlp_drop_rate: float = 0.0,
|
| 333 |
-
attention_bias: bool = True,
|
| 334 |
-
) -> None:
|
| 335 |
-
super().__init__()
|
| 336 |
-
|
| 337 |
-
self.refiner_blocks = nn.ModuleList(
|
| 338 |
-
[
|
| 339 |
-
HunyuanVideoIndividualTokenRefinerBlock(
|
| 340 |
-
num_attention_heads=num_attention_heads,
|
| 341 |
-
attention_head_dim=attention_head_dim,
|
| 342 |
-
mlp_width_ratio=mlp_width_ratio,
|
| 343 |
-
mlp_drop_rate=mlp_drop_rate,
|
| 344 |
-
attention_bias=attention_bias,
|
| 345 |
-
)
|
| 346 |
-
for _ in range(num_layers)
|
| 347 |
-
]
|
| 348 |
-
)
|
| 349 |
-
|
| 350 |
-
def forward(
|
| 351 |
-
self,
|
| 352 |
-
hidden_states: torch.Tensor,
|
| 353 |
-
temb: torch.Tensor,
|
| 354 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 355 |
-
) -> None:
|
| 356 |
-
self_attn_mask = None
|
| 357 |
-
if attention_mask is not None:
|
| 358 |
-
batch_size = attention_mask.shape[0]
|
| 359 |
-
seq_len = attention_mask.shape[1]
|
| 360 |
-
attention_mask = attention_mask.to(hidden_states.device).bool()
|
| 361 |
-
self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).
|
| 362 |
-
self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
|
| 363 |
-
self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
|
| 364 |
-
self_attn_mask[:, :, :, 0] = True
|
| 365 |
-
|
| 366 |
-
for block in self.refiner_blocks:
|
| 367 |
-
hidden_states = block(hidden_states, temb, self_attn_mask)
|
| 368 |
-
|
| 369 |
-
return hidden_states
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
class HunyuanVideoTokenRefiner(nn.Module):
|
| 373 |
-
def __init__(
|
| 374 |
-
self,
|
| 375 |
-
in_channels: int,
|
| 376 |
-
num_attention_heads: int,
|
| 377 |
-
attention_head_dim: int,
|
| 378 |
-
num_layers: int,
|
| 379 |
-
mlp_ratio: float = 4.0,
|
| 380 |
-
mlp_drop_rate: float = 0.0,
|
| 381 |
-
attention_bias: bool = True,
|
| 382 |
-
) -> None:
|
| 383 |
-
super().__init__()
|
| 384 |
-
|
| 385 |
-
hidden_size = num_attention_heads * attention_head_dim
|
| 386 |
-
|
| 387 |
-
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
| 388 |
-
embedding_dim=hidden_size, pooled_projection_dim=in_channels
|
| 389 |
-
)
|
| 390 |
-
self.proj_in = nn.Linear(in_channels, hidden_size, bias=True)
|
| 391 |
-
self.token_refiner = HunyuanVideoIndividualTokenRefiner(
|
| 392 |
-
num_attention_heads=num_attention_heads,
|
| 393 |
-
attention_head_dim=attention_head_dim,
|
| 394 |
-
num_layers=num_layers,
|
| 395 |
-
mlp_width_ratio=mlp_ratio,
|
| 396 |
-
mlp_drop_rate=mlp_drop_rate,
|
| 397 |
-
attention_bias=attention_bias,
|
| 398 |
-
)
|
| 399 |
-
|
| 400 |
-
def forward(
|
| 401 |
-
self,
|
| 402 |
-
hidden_states: torch.Tensor,
|
| 403 |
-
timestep: torch.LongTensor,
|
| 404 |
-
attention_mask: Optional[torch.LongTensor] = None,
|
| 405 |
-
) -> torch.Tensor:
|
| 406 |
-
if attention_mask is None:
|
| 407 |
-
pooled_projections = hidden_states.mean(dim=1)
|
| 408 |
-
else:
|
| 409 |
-
original_dtype = hidden_states.dtype
|
| 410 |
-
mask_float = attention_mask.float().unsqueeze(-1)
|
| 411 |
-
pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1)
|
| 412 |
-
pooled_projections = pooled_projections.to(original_dtype)
|
| 413 |
-
|
| 414 |
-
temb = self.time_text_embed(timestep, pooled_projections)
|
| 415 |
-
hidden_states = self.proj_in(hidden_states)
|
| 416 |
-
hidden_states = self.token_refiner(hidden_states, temb, attention_mask)
|
| 417 |
-
|
| 418 |
-
return hidden_states
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
class HunyuanVideoRotaryPosEmbed(nn.Module):
|
| 422 |
-
def __init__(self, rope_dim, theta):
|
| 423 |
-
super().__init__()
|
| 424 |
-
self.DT, self.DY, self.DX = rope_dim
|
| 425 |
-
self.theta = theta
|
| 426 |
-
|
| 427 |
-
@torch.no_grad()
|
| 428 |
-
def get_frequency(self, dim, pos):
|
| 429 |
-
T, H, W = pos.shape
|
| 430 |
-
freqs = 1.0 / (self.theta ** (torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device)[: (dim // 2)] / dim))
|
| 431 |
-
freqs = torch.outer(freqs, pos.reshape(-1)).unflatten(-1, (T, H, W)).repeat_interleave(2, dim=0)
|
| 432 |
-
return freqs.cos(), freqs.sin()
|
| 433 |
-
|
| 434 |
-
@torch.no_grad()
|
| 435 |
-
def forward_inner(self, frame_indices, height, width, device):
|
| 436 |
-
GT, GY, GX = torch.meshgrid(
|
| 437 |
-
frame_indices.to(device=device, dtype=torch.float32),
|
| 438 |
-
torch.arange(0, height, device=device, dtype=torch.float32),
|
| 439 |
-
torch.arange(0, width, device=device, dtype=torch.float32),
|
| 440 |
-
indexing="ij"
|
| 441 |
-
)
|
| 442 |
-
|
| 443 |
-
FCT, FST = self.get_frequency(self.DT, GT)
|
| 444 |
-
FCY, FSY = self.get_frequency(self.DY, GY)
|
| 445 |
-
FCX, FSX = self.get_frequency(self.DX, GX)
|
| 446 |
-
|
| 447 |
-
result = torch.cat([FCT, FCY, FCX, FST, FSY, FSX], dim=0)
|
| 448 |
-
|
| 449 |
-
return result.to(device)
|
| 450 |
-
|
| 451 |
-
@torch.no_grad()
|
| 452 |
-
def forward(self, frame_indices, height, width, device):
|
| 453 |
-
frame_indices = frame_indices.unbind(0)
|
| 454 |
-
results = [self.forward_inner(f, height, width, device) for f in frame_indices]
|
| 455 |
-
results = torch.stack(results, dim=0)
|
| 456 |
-
return results
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
class AdaLayerNormZero(nn.Module):
|
| 460 |
-
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
|
| 461 |
-
super().__init__()
|
| 462 |
-
self.silu = nn.SiLU()
|
| 463 |
-
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias)
|
| 464 |
-
if norm_type == "layer_norm":
|
| 465 |
-
self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
| 466 |
-
else:
|
| 467 |
-
raise ValueError(f"unknown norm_type {norm_type}")
|
| 468 |
-
|
| 469 |
-
def forward(
|
| 470 |
-
self,
|
| 471 |
-
x: torch.Tensor,
|
| 472 |
-
emb: Optional[torch.Tensor] = None,
|
| 473 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 474 |
-
emb = emb.unsqueeze(-2)
|
| 475 |
-
emb = self.linear(self.silu(emb))
|
| 476 |
-
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1)
|
| 477 |
-
x = self.norm(x) * (1 + scale_msa) + shift_msa
|
| 478 |
-
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
class AdaLayerNormZeroSingle(nn.Module):
|
| 482 |
-
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
|
| 483 |
-
super().__init__()
|
| 484 |
-
|
| 485 |
-
self.silu = nn.SiLU()
|
| 486 |
-
self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias)
|
| 487 |
-
if norm_type == "layer_norm":
|
| 488 |
-
self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
| 489 |
-
else:
|
| 490 |
-
raise ValueError(f"unknown norm_type {norm_type}")
|
| 491 |
-
|
| 492 |
-
def forward(
|
| 493 |
-
self,
|
| 494 |
-
x: torch.Tensor,
|
| 495 |
-
emb: Optional[torch.Tensor] = None,
|
| 496 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 497 |
-
emb = emb.unsqueeze(-2)
|
| 498 |
-
emb = self.linear(self.silu(emb))
|
| 499 |
-
shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1)
|
| 500 |
-
x = self.norm(x) * (1 + scale_msa) + shift_msa
|
| 501 |
-
return x, gate_msa
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
class AdaLayerNormContinuous(nn.Module):
|
| 505 |
-
def __init__(
|
| 506 |
-
self,
|
| 507 |
-
embedding_dim: int,
|
| 508 |
-
conditioning_embedding_dim: int,
|
| 509 |
-
elementwise_affine=True,
|
| 510 |
-
eps=1e-5,
|
| 511 |
-
bias=True,
|
| 512 |
-
norm_type="layer_norm",
|
| 513 |
-
):
|
| 514 |
-
super().__init__()
|
| 515 |
-
self.silu = nn.SiLU()
|
| 516 |
-
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias)
|
| 517 |
-
if norm_type == "layer_norm":
|
| 518 |
-
self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)
|
| 519 |
-
else:
|
| 520 |
-
raise ValueError(f"unknown norm_type {norm_type}")
|
| 521 |
-
|
| 522 |
-
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
|
| 523 |
-
emb = emb.unsqueeze(-2)
|
| 524 |
-
emb = self.linear(self.silu(emb))
|
| 525 |
-
scale, shift = emb.chunk(2, dim=-1)
|
| 526 |
-
x = self.norm(x) * (1 + scale) + shift
|
| 527 |
-
return x
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
class HunyuanVideoSingleTransformerBlock(nn.Module):
|
| 531 |
-
def __init__(
|
| 532 |
-
self,
|
| 533 |
-
num_attention_heads: int,
|
| 534 |
-
attention_head_dim: int,
|
| 535 |
-
mlp_ratio: float = 4.0,
|
| 536 |
-
qk_norm: str = "rms_norm",
|
| 537 |
-
) -> None:
|
| 538 |
-
super().__init__()
|
| 539 |
-
|
| 540 |
-
hidden_size = num_attention_heads * attention_head_dim
|
| 541 |
-
mlp_dim = int(hidden_size * mlp_ratio)
|
| 542 |
-
|
| 543 |
-
self.attn = Attention(
|
| 544 |
-
query_dim=hidden_size,
|
| 545 |
-
cross_attention_dim=None,
|
| 546 |
-
dim_head=attention_head_dim,
|
| 547 |
-
heads=num_attention_heads,
|
| 548 |
-
out_dim=hidden_size,
|
| 549 |
-
bias=True,
|
| 550 |
-
processor=HunyuanAttnProcessorFlashAttnSingle(),
|
| 551 |
-
qk_norm=qk_norm,
|
| 552 |
-
eps=1e-6,
|
| 553 |
-
pre_only=True,
|
| 554 |
-
)
|
| 555 |
-
|
| 556 |
-
self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm")
|
| 557 |
-
self.proj_mlp = nn.Linear(hidden_size, mlp_dim)
|
| 558 |
-
self.act_mlp = nn.GELU(approximate="tanh")
|
| 559 |
-
self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size)
|
| 560 |
-
|
| 561 |
-
def forward(
|
| 562 |
-
self,
|
| 563 |
-
hidden_states: torch.Tensor,
|
| 564 |
-
encoder_hidden_states: torch.Tensor,
|
| 565 |
-
temb: torch.Tensor,
|
| 566 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 567 |
-
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 568 |
-
) -> torch.Tensor:
|
| 569 |
-
text_seq_length = encoder_hidden_states.shape[1]
|
| 570 |
-
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
| 571 |
-
|
| 572 |
-
residual = hidden_states
|
| 573 |
-
|
| 574 |
-
# 1. Input normalization
|
| 575 |
-
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
| 576 |
-
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
| 577 |
-
|
| 578 |
-
norm_hidden_states, norm_encoder_hidden_states = (
|
| 579 |
-
norm_hidden_states[:, :-text_seq_length, :],
|
| 580 |
-
norm_hidden_states[:, -text_seq_length:, :],
|
| 581 |
-
)
|
| 582 |
-
|
| 583 |
-
# 2. Attention
|
| 584 |
-
attn_output, context_attn_output = self.attn(
|
| 585 |
-
hidden_states=norm_hidden_states,
|
| 586 |
-
encoder_hidden_states=norm_encoder_hidden_states,
|
| 587 |
-
attention_mask=attention_mask,
|
| 588 |
-
image_rotary_emb=image_rotary_emb,
|
| 589 |
-
)
|
| 590 |
-
attn_output = torch.cat([attn_output, context_attn_output], dim=1)
|
| 591 |
-
|
| 592 |
-
# 3. Modulation and residual connection
|
| 593 |
-
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
| 594 |
-
hidden_states = gate * self.proj_out(hidden_states)
|
| 595 |
-
hidden_states = hidden_states + residual
|
| 596 |
-
|
| 597 |
-
hidden_states, encoder_hidden_states = (
|
| 598 |
-
hidden_states[:, :-text_seq_length, :],
|
| 599 |
-
hidden_states[:, -text_seq_length:, :],
|
| 600 |
-
)
|
| 601 |
-
return hidden_states, encoder_hidden_states
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
class HunyuanVideoTransformerBlock(nn.Module):
|
| 605 |
-
def __init__(
|
| 606 |
-
self,
|
| 607 |
-
num_attention_heads: int,
|
| 608 |
-
attention_head_dim: int,
|
| 609 |
-
mlp_ratio: float,
|
| 610 |
-
qk_norm: str = "rms_norm",
|
| 611 |
-
) -> None:
|
| 612 |
-
super().__init__()
|
| 613 |
-
|
| 614 |
-
hidden_size = num_attention_heads * attention_head_dim
|
| 615 |
-
|
| 616 |
-
self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
|
| 617 |
-
self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
|
| 618 |
-
|
| 619 |
-
self.attn = Attention(
|
| 620 |
-
query_dim=hidden_size,
|
| 621 |
-
cross_attention_dim=None,
|
| 622 |
-
added_kv_proj_dim=hidden_size,
|
| 623 |
-
dim_head=attention_head_dim,
|
| 624 |
-
heads=num_attention_heads,
|
| 625 |
-
out_dim=hidden_size,
|
| 626 |
-
context_pre_only=False,
|
| 627 |
-
bias=True,
|
| 628 |
-
processor=HunyuanAttnProcessorFlashAttnDouble(),
|
| 629 |
-
qk_norm=qk_norm,
|
| 630 |
-
eps=1e-6,
|
| 631 |
-
)
|
| 632 |
-
|
| 633 |
-
self.norm2 = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
| 634 |
-
self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
|
| 635 |
-
|
| 636 |
-
self.norm2_context = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
| 637 |
-
self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
|
| 638 |
-
|
| 639 |
-
def forward(
|
| 640 |
-
self,
|
| 641 |
-
hidden_states: torch.Tensor,
|
| 642 |
-
encoder_hidden_states: torch.Tensor,
|
| 643 |
-
temb: torch.Tensor,
|
| 644 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 645 |
-
freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 646 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 647 |
-
# 1. Input normalization
|
| 648 |
-
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
| 649 |
-
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(encoder_hidden_states, emb=temb)
|
| 650 |
-
|
| 651 |
-
# 2. Joint attention
|
| 652 |
-
attn_output, context_attn_output = self.attn(
|
| 653 |
-
hidden_states=norm_hidden_states,
|
| 654 |
-
encoder_hidden_states=norm_encoder_hidden_states,
|
| 655 |
-
attention_mask=attention_mask,
|
| 656 |
-
image_rotary_emb=freqs_cis,
|
| 657 |
-
)
|
| 658 |
-
|
| 659 |
-
# 3. Modulation and residual connection
|
| 660 |
-
hidden_states = hidden_states + attn_output * gate_msa
|
| 661 |
-
encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa
|
| 662 |
-
|
| 663 |
-
norm_hidden_states = self.norm2(hidden_states)
|
| 664 |
-
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
| 665 |
-
|
| 666 |
-
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
| 667 |
-
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp
|
| 668 |
-
|
| 669 |
-
# 4. Feed-forward
|
| 670 |
-
ff_output = self.ff(norm_hidden_states)
|
| 671 |
-
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
| 672 |
-
|
| 673 |
-
hidden_states = hidden_states + gate_mlp * ff_output
|
| 674 |
-
encoder_hidden_states = encoder_hidden_states + c_gate_mlp * context_ff_output
|
| 675 |
-
|
| 676 |
-
return hidden_states, encoder_hidden_states
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
class ClipVisionProjection(nn.Module):
|
| 680 |
-
def __init__(self, in_channels, out_channels):
|
| 681 |
-
super().__init__()
|
| 682 |
-
self.up = nn.Linear(in_channels, out_channels * 3)
|
| 683 |
-
self.down = nn.Linear(out_channels * 3, out_channels)
|
| 684 |
-
|
| 685 |
-
def forward(self, x):
|
| 686 |
-
projected_x = self.down(nn.functional.silu(self.up(x)))
|
| 687 |
-
return projected_x
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
class HunyuanVideoPatchEmbed(nn.Module):
|
| 691 |
-
def __init__(self, patch_size, in_chans, embed_dim):
|
| 692 |
-
super().__init__()
|
| 693 |
-
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
class HunyuanVideoPatchEmbedForCleanLatents(nn.Module):
|
| 697 |
-
def __init__(self, inner_dim):
|
| 698 |
-
super().__init__()
|
| 699 |
-
self.proj = nn.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2))
|
| 700 |
-
self.proj_2x = nn.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4))
|
| 701 |
-
self.proj_4x = nn.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8))
|
| 702 |
-
|
| 703 |
-
@torch.no_grad()
|
| 704 |
-
def initialize_weight_from_another_conv3d(self, another_layer):
|
| 705 |
-
weight = another_layer.weight.detach().clone()
|
| 706 |
-
bias = another_layer.bias.detach().clone()
|
| 707 |
-
|
| 708 |
-
sd = {
|
| 709 |
-
'proj.weight': weight.clone(),
|
| 710 |
-
'proj.bias': bias.clone(),
|
| 711 |
-
'proj_2x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=2, hk=2, wk=2) / 8.0,
|
| 712 |
-
'proj_2x.bias': bias.clone(),
|
| 713 |
-
'proj_4x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=4, hk=4, wk=4) / 64.0,
|
| 714 |
-
'proj_4x.bias': bias.clone(),
|
| 715 |
-
}
|
| 716 |
-
|
| 717 |
-
sd = {k: v.clone() for k, v in sd.items()}
|
| 718 |
-
|
| 719 |
-
self.load_state_dict(sd)
|
| 720 |
-
return
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
class HunyuanVideoTransformer3DModelPacked(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
| 724 |
-
@register_to_config
|
| 725 |
-
def __init__(
|
| 726 |
-
self,
|
| 727 |
-
in_channels: int = 16,
|
| 728 |
-
out_channels: int = 16,
|
| 729 |
-
num_attention_heads: int = 24,
|
| 730 |
-
attention_head_dim: int = 128,
|
| 731 |
-
num_layers: int = 20,
|
| 732 |
-
num_single_layers: int = 40,
|
| 733 |
-
num_refiner_layers: int = 2,
|
| 734 |
-
mlp_ratio: float = 4.0,
|
| 735 |
-
patch_size: int = 2,
|
| 736 |
-
patch_size_t: int = 1,
|
| 737 |
-
qk_norm: str = "rms_norm",
|
| 738 |
-
guidance_embeds: bool = True,
|
| 739 |
-
text_embed_dim: int = 4096,
|
| 740 |
-
pooled_projection_dim: int = 768,
|
| 741 |
-
rope_theta: float = 256.0,
|
| 742 |
-
rope_axes_dim: Tuple[int] = (16, 56, 56),
|
| 743 |
-
has_image_proj=False,
|
| 744 |
-
image_proj_dim=1152,
|
| 745 |
-
has_clean_x_embedder=False,
|
| 746 |
-
) -> None:
|
| 747 |
-
super().__init__()
|
| 748 |
-
|
| 749 |
-
inner_dim = num_attention_heads * attention_head_dim
|
| 750 |
-
out_channels = out_channels or in_channels
|
| 751 |
-
|
| 752 |
-
# 1. Latent and condition embedders
|
| 753 |
-
self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim)
|
| 754 |
-
self.context_embedder = HunyuanVideoTokenRefiner(
|
| 755 |
-
text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers
|
| 756 |
-
)
|
| 757 |
-
self.time_text_embed = CombinedTimestepGuidanceTextProjEmbeddings(inner_dim, pooled_projection_dim)
|
| 758 |
-
|
| 759 |
-
self.clean_x_embedder = None
|
| 760 |
-
self.image_projection = None
|
| 761 |
-
|
| 762 |
-
# 2. RoPE
|
| 763 |
-
self.rope = HunyuanVideoRotaryPosEmbed(rope_axes_dim, rope_theta)
|
| 764 |
-
|
| 765 |
-
# 3. Dual stream transformer blocks
|
| 766 |
-
self.transformer_blocks = nn.ModuleList(
|
| 767 |
-
[
|
| 768 |
-
HunyuanVideoTransformerBlock(
|
| 769 |
-
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
| 770 |
-
)
|
| 771 |
-
for _ in range(num_layers)
|
| 772 |
-
]
|
| 773 |
-
)
|
| 774 |
-
|
| 775 |
-
# 4. Single stream transformer blocks
|
| 776 |
-
self.single_transformer_blocks = nn.ModuleList(
|
| 777 |
-
[
|
| 778 |
-
HunyuanVideoSingleTransformerBlock(
|
| 779 |
-
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
| 780 |
-
)
|
| 781 |
-
for _ in range(num_single_layers)
|
| 782 |
-
]
|
| 783 |
-
)
|
| 784 |
-
|
| 785 |
-
# 5. Output projection
|
| 786 |
-
self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6)
|
| 787 |
-
self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels)
|
| 788 |
-
|
| 789 |
-
self.inner_dim = inner_dim
|
| 790 |
-
self.use_gradient_checkpointing = False
|
| 791 |
-
self.enable_teacache = False
|
| 792 |
-
|
| 793 |
-
if has_image_proj:
|
| 794 |
-
self.install_image_projection(image_proj_dim)
|
| 795 |
-
|
| 796 |
-
if has_clean_x_embedder:
|
| 797 |
-
self.install_clean_x_embedder()
|
| 798 |
-
|
| 799 |
-
self.high_quality_fp32_output_for_inference = False
|
| 800 |
-
|
| 801 |
-
def install_image_projection(self, in_channels):
|
| 802 |
-
self.image_projection = ClipVisionProjection(in_channels=in_channels, out_channels=self.inner_dim)
|
| 803 |
-
self.config['has_image_proj'] = True
|
| 804 |
-
self.config['image_proj_dim'] = in_channels
|
| 805 |
-
|
| 806 |
-
def install_clean_x_embedder(self):
|
| 807 |
-
self.clean_x_embedder = HunyuanVideoPatchEmbedForCleanLatents(self.inner_dim)
|
| 808 |
-
self.config['has_clean_x_embedder'] = True
|
| 809 |
-
|
| 810 |
-
def enable_gradient_checkpointing(self):
|
| 811 |
-
self.use_gradient_checkpointing = True
|
| 812 |
-
print('self.use_gradient_checkpointing = True')
|
| 813 |
-
|
| 814 |
-
def disable_gradient_checkpointing(self):
|
| 815 |
-
self.use_gradient_checkpointing = False
|
| 816 |
-
print('self.use_gradient_checkpointing = False')
|
| 817 |
-
|
| 818 |
-
def initialize_teacache(self, enable_teacache=True, num_steps=25, rel_l1_thresh=0.15):
|
| 819 |
-
self.enable_teacache = enable_teacache
|
| 820 |
-
self.cnt = 0
|
| 821 |
-
self.num_steps = num_steps
|
| 822 |
-
self.rel_l1_thresh = rel_l1_thresh # 0.1 for 1.6x speedup, 0.15 for 2.1x speedup
|
| 823 |
-
self.accumulated_rel_l1_distance = 0
|
| 824 |
-
self.previous_modulated_input = None
|
| 825 |
-
self.previous_residual = None
|
| 826 |
-
self.teacache_rescale_func = np.poly1d([7.33226126e+02, -4.01131952e+02, 6.75869174e+01, -3.14987800e+00, 9.61237896e-02])
|
| 827 |
-
|
| 828 |
-
def gradient_checkpointing_method(self, block, *args):
|
| 829 |
-
if self.use_gradient_checkpointing:
|
| 830 |
-
result = torch.utils.checkpoint.checkpoint(block, *args, use_reentrant=False)
|
| 831 |
-
else:
|
| 832 |
-
result = block(*args)
|
| 833 |
-
return result
|
| 834 |
-
|
| 835 |
-
def process_input_hidden_states(
|
| 836 |
-
self,
|
| 837 |
-
latents, latent_indices=None,
|
| 838 |
-
clean_latents=None, clean_latent_indices=None,
|
| 839 |
-
clean_latents_2x=None, clean_latent_2x_indices=None,
|
| 840 |
-
clean_latents_4x=None, clean_latent_4x_indices=None
|
| 841 |
-
):
|
| 842 |
-
hidden_states = self.gradient_checkpointing_method(self.x_embedder.proj, latents)
|
| 843 |
-
B, C, T, H, W = hidden_states.shape
|
| 844 |
-
|
| 845 |
-
if latent_indices is None:
|
| 846 |
-
latent_indices = torch.arange(0, T).unsqueeze(0).expand(B, -1)
|
| 847 |
-
|
| 848 |
-
hidden_states = hidden_states.flatten(2).transpose(1, 2)
|
| 849 |
-
|
| 850 |
-
rope_freqs = self.rope(frame_indices=latent_indices, height=H, width=W, device=hidden_states.device)
|
| 851 |
-
rope_freqs = rope_freqs.flatten(2).transpose(1, 2)
|
| 852 |
-
|
| 853 |
-
if clean_latents is not None and clean_latent_indices is not None:
|
| 854 |
-
clean_latents = clean_latents.to(hidden_states)
|
| 855 |
-
clean_latents = self.gradient_checkpointing_method(self.clean_x_embedder.proj, clean_latents)
|
| 856 |
-
clean_latents = clean_latents.flatten(2).transpose(1, 2)
|
| 857 |
-
|
| 858 |
-
clean_latent_rope_freqs = self.rope(frame_indices=clean_latent_indices, height=H, width=W, device=clean_latents.device)
|
| 859 |
-
clean_latent_rope_freqs = clean_latent_rope_freqs.flatten(2).transpose(1, 2)
|
| 860 |
-
|
| 861 |
-
hidden_states = torch.cat([clean_latents, hidden_states], dim=1)
|
| 862 |
-
rope_freqs = torch.cat([clean_latent_rope_freqs, rope_freqs], dim=1)
|
| 863 |
-
|
| 864 |
-
if clean_latents_2x is not None and clean_latent_2x_indices is not None:
|
| 865 |
-
clean_latents_2x = clean_latents_2x.to(hidden_states)
|
| 866 |
-
clean_latents_2x = pad_for_3d_conv(clean_latents_2x, (2, 4, 4))
|
| 867 |
-
clean_latents_2x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_2x, clean_latents_2x)
|
| 868 |
-
clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2)
|
| 869 |
-
|
| 870 |
-
clean_latent_2x_rope_freqs = self.rope(frame_indices=clean_latent_2x_indices, height=H, width=W, device=clean_latents_2x.device)
|
| 871 |
-
clean_latent_2x_rope_freqs = pad_for_3d_conv(clean_latent_2x_rope_freqs, (2, 2, 2))
|
| 872 |
-
clean_latent_2x_rope_freqs = center_down_sample_3d(clean_latent_2x_rope_freqs, (2, 2, 2))
|
| 873 |
-
clean_latent_2x_rope_freqs = clean_latent_2x_rope_freqs.flatten(2).transpose(1, 2)
|
| 874 |
-
|
| 875 |
-
hidden_states = torch.cat([clean_latents_2x, hidden_states], dim=1)
|
| 876 |
-
rope_freqs = torch.cat([clean_latent_2x_rope_freqs, rope_freqs], dim=1)
|
| 877 |
-
|
| 878 |
-
if clean_latents_4x is not None and clean_latent_4x_indices is not None:
|
| 879 |
-
clean_latents_4x = clean_latents_4x.to(hidden_states)
|
| 880 |
-
clean_latents_4x = pad_for_3d_conv(clean_latents_4x, (4, 8, 8))
|
| 881 |
-
clean_latents_4x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_4x, clean_latents_4x)
|
| 882 |
-
clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2)
|
| 883 |
-
|
| 884 |
-
clean_latent_4x_rope_freqs = self.rope(frame_indices=clean_latent_4x_indices, height=H, width=W, device=clean_latents_4x.device)
|
| 885 |
-
clean_latent_4x_rope_freqs = pad_for_3d_conv(clean_latent_4x_rope_freqs, (4, 4, 4))
|
| 886 |
-
clean_latent_4x_rope_freqs = center_down_sample_3d(clean_latent_4x_rope_freqs, (4, 4, 4))
|
| 887 |
-
clean_latent_4x_rope_freqs = clean_latent_4x_rope_freqs.flatten(2).transpose(1, 2)
|
| 888 |
-
|
| 889 |
-
hidden_states = torch.cat([clean_latents_4x, hidden_states], dim=1)
|
| 890 |
-
rope_freqs = torch.cat([clean_latent_4x_rope_freqs, rope_freqs], dim=1)
|
| 891 |
-
|
| 892 |
-
return hidden_states, rope_freqs
|
| 893 |
-
|
| 894 |
-
def forward(
|
| 895 |
-
self,
|
| 896 |
-
hidden_states, timestep, encoder_hidden_states, encoder_attention_mask, pooled_projections, guidance,
|
| 897 |
-
latent_indices=None,
|
| 898 |
-
clean_latents=None, clean_latent_indices=None,
|
| 899 |
-
clean_latents_2x=None, clean_latent_2x_indices=None,
|
| 900 |
-
clean_latents_4x=None, clean_latent_4x_indices=None,
|
| 901 |
-
image_embeddings=None,
|
| 902 |
-
attention_kwargs=None, return_dict=True
|
| 903 |
-
):
|
| 904 |
-
|
| 905 |
-
if attention_kwargs is None:
|
| 906 |
-
attention_kwargs = {}
|
| 907 |
-
|
| 908 |
-
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
| 909 |
-
p, p_t = self.config['patch_size'], self.config['patch_size_t']
|
| 910 |
-
post_patch_num_frames = num_frames // p_t
|
| 911 |
-
post_patch_height = height // p
|
| 912 |
-
post_patch_width = width // p
|
| 913 |
-
original_context_length = post_patch_num_frames * post_patch_height * post_patch_width
|
| 914 |
-
|
| 915 |
-
hidden_states, rope_freqs = self.process_input_hidden_states(hidden_states, latent_indices, clean_latents, clean_latent_indices, clean_latents_2x, clean_latent_2x_indices, clean_latents_4x, clean_latent_4x_indices)
|
| 916 |
-
|
| 917 |
-
temb = self.gradient_checkpointing_method(self.time_text_embed, timestep, guidance, pooled_projections)
|
| 918 |
-
encoder_hidden_states = self.gradient_checkpointing_method(self.context_embedder, encoder_hidden_states, timestep, encoder_attention_mask)
|
| 919 |
-
|
| 920 |
-
if self.image_projection is not None:
|
| 921 |
-
assert image_embeddings is not None, 'You must use image embeddings!'
|
| 922 |
-
extra_encoder_hidden_states = self.gradient_checkpointing_method(self.image_projection, image_embeddings)
|
| 923 |
-
extra_attention_mask = torch.ones((batch_size, extra_encoder_hidden_states.shape[1]), dtype=encoder_attention_mask.dtype, device=encoder_attention_mask.device)
|
| 924 |
-
|
| 925 |
-
# must cat before (not after) encoder_hidden_states, due to attn masking
|
| 926 |
-
encoder_hidden_states = torch.cat([extra_encoder_hidden_states, encoder_hidden_states], dim=1)
|
| 927 |
-
encoder_attention_mask = torch.cat([extra_attention_mask, encoder_attention_mask], dim=1)
|
| 928 |
-
|
| 929 |
-
with torch.no_grad():
|
| 930 |
-
if batch_size == 1:
|
| 931 |
-
# When batch size is 1, we do not need any masks or var-len funcs since cropping is mathematically same to what we want
|
| 932 |
-
# If they are not same, then their impls are wrong. Ours are always the correct one.
|
| 933 |
-
text_len = encoder_attention_mask.sum().item()
|
| 934 |
-
encoder_hidden_states = encoder_hidden_states[:, :text_len]
|
| 935 |
-
attention_mask = None, None, None, None
|
| 936 |
-
else:
|
| 937 |
-
img_seq_len = hidden_states.shape[1]
|
| 938 |
-
txt_seq_len = encoder_hidden_states.shape[1]
|
| 939 |
-
|
| 940 |
-
cu_seqlens_q = get_cu_seqlens(encoder_attention_mask, img_seq_len)
|
| 941 |
-
cu_seqlens_kv = cu_seqlens_q
|
| 942 |
-
max_seqlen_q = img_seq_len + txt_seq_len
|
| 943 |
-
max_seqlen_kv = max_seqlen_q
|
| 944 |
-
|
| 945 |
-
attention_mask = cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv
|
| 946 |
-
|
| 947 |
-
if self.enable_teacache:
|
| 948 |
-
modulated_inp = self.transformer_blocks[0].norm1(hidden_states, emb=temb)[0]
|
| 949 |
-
|
| 950 |
-
if self.cnt == 0 or self.cnt == self.num_steps-1:
|
| 951 |
-
should_calc = True
|
| 952 |
-
self.accumulated_rel_l1_distance = 0
|
| 953 |
-
else:
|
| 954 |
-
curr_rel_l1 = ((modulated_inp - self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()
|
| 955 |
-
self.accumulated_rel_l1_distance += self.teacache_rescale_func(curr_rel_l1)
|
| 956 |
-
should_calc = self.accumulated_rel_l1_distance >= self.rel_l1_thresh
|
| 957 |
-
|
| 958 |
-
if should_calc:
|
| 959 |
-
self.accumulated_rel_l1_distance = 0
|
| 960 |
-
|
| 961 |
-
self.previous_modulated_input = modulated_inp
|
| 962 |
-
self.cnt += 1
|
| 963 |
-
|
| 964 |
-
if self.cnt == self.num_steps:
|
| 965 |
-
self.cnt = 0
|
| 966 |
-
|
| 967 |
-
if not should_calc:
|
| 968 |
-
hidden_states = hidden_states + self.previous_residual
|
| 969 |
-
else:
|
| 970 |
-
ori_hidden_states = hidden_states.clone()
|
| 971 |
-
|
| 972 |
-
for block_id, block in enumerate(self.transformer_blocks):
|
| 973 |
-
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
| 974 |
-
block,
|
| 975 |
-
hidden_states,
|
| 976 |
-
encoder_hidden_states,
|
| 977 |
-
temb,
|
| 978 |
-
attention_mask,
|
| 979 |
-
rope_freqs
|
| 980 |
-
)
|
| 981 |
-
|
| 982 |
-
for block_id, block in enumerate(self.single_transformer_blocks):
|
| 983 |
-
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
| 984 |
-
block,
|
| 985 |
-
hidden_states,
|
| 986 |
-
encoder_hidden_states,
|
| 987 |
-
temb,
|
| 988 |
-
attention_mask,
|
| 989 |
-
rope_freqs
|
| 990 |
-
)
|
| 991 |
-
|
| 992 |
-
self.previous_residual = hidden_states - ori_hidden_states
|
| 993 |
-
else:
|
| 994 |
-
for block_id, block in enumerate(self.transformer_blocks):
|
| 995 |
-
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
| 996 |
-
block,
|
| 997 |
-
hidden_states,
|
| 998 |
-
encoder_hidden_states,
|
| 999 |
-
temb,
|
| 1000 |
-
attention_mask,
|
| 1001 |
-
rope_freqs
|
| 1002 |
-
)
|
| 1003 |
-
|
| 1004 |
-
for block_id, block in enumerate(self.single_transformer_blocks):
|
| 1005 |
-
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
| 1006 |
-
block,
|
| 1007 |
-
hidden_states,
|
| 1008 |
-
encoder_hidden_states,
|
| 1009 |
-
temb,
|
| 1010 |
-
attention_mask,
|
| 1011 |
-
rope_freqs
|
| 1012 |
-
)
|
| 1013 |
-
|
| 1014 |
-
hidden_states = self.gradient_checkpointing_method(self.norm_out, hidden_states, temb)
|
| 1015 |
-
|
| 1016 |
-
hidden_states = hidden_states[:, -original_context_length:, :]
|
| 1017 |
-
|
| 1018 |
-
if self.high_quality_fp32_output_for_inference:
|
| 1019 |
-
hidden_states = hidden_states.to(dtype=torch.float32)
|
| 1020 |
-
if self.proj_out.weight.dtype != torch.float32:
|
| 1021 |
-
self.proj_out.to(dtype=torch.float32)
|
| 1022 |
-
|
| 1023 |
-
hidden_states = self.gradient_checkpointing_method(self.proj_out, hidden_states)
|
| 1024 |
-
|
| 1025 |
-
hidden_states = einops.rearrange(hidden_states, 'b (t h w) (c pt ph pw) -> b c (t pt) (h ph) (w pw)',
|
| 1026 |
-
t=post_patch_num_frames, h=post_patch_height, w=post_patch_width,
|
| 1027 |
-
pt=p_t, ph=p, pw=p)
|
| 1028 |
-
|
| 1029 |
-
if return_dict:
|
| 1030 |
-
return Transformer2DModelOutput(sample=hidden_states)
|
| 1031 |
-
|
| 1032 |
-
return hidden_states,
|
|
|
|
| 1 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import einops
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
from diffusers.loaders import FromOriginalModelMixin
|
| 9 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 10 |
+
from diffusers.loaders import PeftAdapterMixin
|
| 11 |
+
from diffusers.utils import logging
|
| 12 |
+
from diffusers.models.attention import FeedForward
|
| 13 |
+
from diffusers.models.attention_processor import Attention
|
| 14 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps, PixArtAlphaTextProjection
|
| 15 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
| 16 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 17 |
+
from diffusers_helper.dit_common import LayerNorm
|
| 18 |
+
from diffusers_helper.utils import zero_module
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
enabled_backends = []
|
| 22 |
+
|
| 23 |
+
if torch.backends.cuda.flash_sdp_enabled():
|
| 24 |
+
enabled_backends.append("flash")
|
| 25 |
+
if torch.backends.cuda.math_sdp_enabled():
|
| 26 |
+
enabled_backends.append("math")
|
| 27 |
+
if torch.backends.cuda.mem_efficient_sdp_enabled():
|
| 28 |
+
enabled_backends.append("mem_efficient")
|
| 29 |
+
if torch.backends.cuda.cudnn_sdp_enabled():
|
| 30 |
+
enabled_backends.append("cudnn")
|
| 31 |
+
|
| 32 |
+
print("Currently enabled native sdp backends:", enabled_backends)
|
| 33 |
+
|
| 34 |
+
try:
|
| 35 |
+
# raise NotImplementedError
|
| 36 |
+
from xformers.ops import memory_efficient_attention as xformers_attn_func
|
| 37 |
+
print('Xformers is installed!')
|
| 38 |
+
except:
|
| 39 |
+
print('Xformers is not installed!')
|
| 40 |
+
xformers_attn_func = None
|
| 41 |
+
|
| 42 |
+
try:
|
| 43 |
+
# raise NotImplementedError
|
| 44 |
+
from flash_attn import flash_attn_varlen_func, flash_attn_func
|
| 45 |
+
print('Flash Attn is installed!')
|
| 46 |
+
except:
|
| 47 |
+
print('Flash Attn is not installed!')
|
| 48 |
+
flash_attn_varlen_func = None
|
| 49 |
+
flash_attn_func = None
|
| 50 |
+
|
| 51 |
+
try:
|
| 52 |
+
# raise NotImplementedError
|
| 53 |
+
from sageattention import sageattn_varlen, sageattn
|
| 54 |
+
print('Sage Attn is installed!')
|
| 55 |
+
except:
|
| 56 |
+
print('Sage Attn is not installed!')
|
| 57 |
+
sageattn_varlen = None
|
| 58 |
+
sageattn = None
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def pad_for_3d_conv(x, kernel_size):
|
| 65 |
+
b, c, t, h, w = x.shape
|
| 66 |
+
pt, ph, pw = kernel_size
|
| 67 |
+
pad_t = (pt - (t % pt)) % pt
|
| 68 |
+
pad_h = (ph - (h % ph)) % ph
|
| 69 |
+
pad_w = (pw - (w % pw)) % pw
|
| 70 |
+
return torch.nn.functional.pad(x, (0, pad_w, 0, pad_h, 0, pad_t), mode='replicate')
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def center_down_sample_3d(x, kernel_size):
|
| 74 |
+
# pt, ph, pw = kernel_size
|
| 75 |
+
# cp = (pt * ph * pw) // 2
|
| 76 |
+
# xp = einops.rearrange(x, 'b c (t pt) (h ph) (w pw) -> (pt ph pw) b c t h w', pt=pt, ph=ph, pw=pw)
|
| 77 |
+
# xc = xp[cp]
|
| 78 |
+
# return xc
|
| 79 |
+
return torch.nn.functional.avg_pool3d(x, kernel_size, stride=kernel_size)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_cu_seqlens(text_mask, img_len):
|
| 83 |
+
batch_size = text_mask.shape[0]
|
| 84 |
+
text_len = text_mask.sum(dim=1)
|
| 85 |
+
max_len = text_mask.shape[1] + img_len
|
| 86 |
+
|
| 87 |
+
cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")
|
| 88 |
+
|
| 89 |
+
for i in range(batch_size):
|
| 90 |
+
s = text_len[i] + img_len
|
| 91 |
+
s1 = i * max_len + s
|
| 92 |
+
s2 = (i + 1) * max_len
|
| 93 |
+
cu_seqlens[2 * i + 1] = s1
|
| 94 |
+
cu_seqlens[2 * i + 2] = s2
|
| 95 |
+
|
| 96 |
+
return cu_seqlens
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def apply_rotary_emb_transposed(x, freqs_cis):
|
| 100 |
+
cos, sin = freqs_cis.unsqueeze(-2).chunk(2, dim=-1)
|
| 101 |
+
x_real, x_imag = x.unflatten(-1, (-1, 2)).unbind(-1)
|
| 102 |
+
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
| 103 |
+
out = x.float() * cos + x_rotated.float() * sin
|
| 104 |
+
out = out.to(x)
|
| 105 |
+
return out
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv):
|
| 109 |
+
if cu_seqlens_q is None and cu_seqlens_kv is None and max_seqlen_q is None and max_seqlen_kv is None:
|
| 110 |
+
if sageattn is not None:
|
| 111 |
+
x = sageattn(q, k, v, tensor_layout='NHD')
|
| 112 |
+
return x
|
| 113 |
+
|
| 114 |
+
if flash_attn_func is not None:
|
| 115 |
+
x = flash_attn_func(q, k, v)
|
| 116 |
+
return x
|
| 117 |
+
|
| 118 |
+
if xformers_attn_func is not None:
|
| 119 |
+
x = xformers_attn_func(q, k, v)
|
| 120 |
+
return x
|
| 121 |
+
|
| 122 |
+
x = torch.nn.functional.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)).transpose(1, 2)
|
| 123 |
+
return x
|
| 124 |
+
|
| 125 |
+
batch_size = q.shape[0]
|
| 126 |
+
q = q.view(q.shape[0] * q.shape[1], *q.shape[2:])
|
| 127 |
+
k = k.view(k.shape[0] * k.shape[1], *k.shape[2:])
|
| 128 |
+
v = v.view(v.shape[0] * v.shape[1], *v.shape[2:])
|
| 129 |
+
if sageattn_varlen is not None:
|
| 130 |
+
x = sageattn_varlen(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
| 131 |
+
elif flash_attn_varlen_func is not None:
|
| 132 |
+
x = flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
| 133 |
+
else:
|
| 134 |
+
raise NotImplementedError('No Attn Installed!')
|
| 135 |
+
x = x.view(batch_size, max_seqlen_q, *x.shape[2:])
|
| 136 |
+
return x
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
class HunyuanAttnProcessorFlashAttnDouble:
|
| 140 |
+
def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
|
| 141 |
+
cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
|
| 142 |
+
|
| 143 |
+
query = attn.to_q(hidden_states)
|
| 144 |
+
key = attn.to_k(hidden_states)
|
| 145 |
+
value = attn.to_v(hidden_states)
|
| 146 |
+
|
| 147 |
+
query = query.unflatten(2, (attn.heads, -1))
|
| 148 |
+
key = key.unflatten(2, (attn.heads, -1))
|
| 149 |
+
value = value.unflatten(2, (attn.heads, -1))
|
| 150 |
+
|
| 151 |
+
query = attn.norm_q(query)
|
| 152 |
+
key = attn.norm_k(key)
|
| 153 |
+
|
| 154 |
+
query = apply_rotary_emb_transposed(query, image_rotary_emb)
|
| 155 |
+
key = apply_rotary_emb_transposed(key, image_rotary_emb)
|
| 156 |
+
|
| 157 |
+
encoder_query = attn.add_q_proj(encoder_hidden_states)
|
| 158 |
+
encoder_key = attn.add_k_proj(encoder_hidden_states)
|
| 159 |
+
encoder_value = attn.add_v_proj(encoder_hidden_states)
|
| 160 |
+
|
| 161 |
+
encoder_query = encoder_query.unflatten(2, (attn.heads, -1))
|
| 162 |
+
encoder_key = encoder_key.unflatten(2, (attn.heads, -1))
|
| 163 |
+
encoder_value = encoder_value.unflatten(2, (attn.heads, -1))
|
| 164 |
+
|
| 165 |
+
encoder_query = attn.norm_added_q(encoder_query)
|
| 166 |
+
encoder_key = attn.norm_added_k(encoder_key)
|
| 167 |
+
|
| 168 |
+
query = torch.cat([query, encoder_query], dim=1)
|
| 169 |
+
key = torch.cat([key, encoder_key], dim=1)
|
| 170 |
+
value = torch.cat([value, encoder_value], dim=1)
|
| 171 |
+
|
| 172 |
+
hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
| 173 |
+
hidden_states = hidden_states.flatten(-2)
|
| 174 |
+
|
| 175 |
+
txt_length = encoder_hidden_states.shape[1]
|
| 176 |
+
hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
|
| 177 |
+
|
| 178 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 179 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 180 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
| 181 |
+
|
| 182 |
+
return hidden_states, encoder_hidden_states
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
class HunyuanAttnProcessorFlashAttnSingle:
|
| 186 |
+
def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
|
| 187 |
+
cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
|
| 188 |
+
|
| 189 |
+
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
| 190 |
+
|
| 191 |
+
query = attn.to_q(hidden_states)
|
| 192 |
+
key = attn.to_k(hidden_states)
|
| 193 |
+
value = attn.to_v(hidden_states)
|
| 194 |
+
|
| 195 |
+
query = query.unflatten(2, (attn.heads, -1))
|
| 196 |
+
key = key.unflatten(2, (attn.heads, -1))
|
| 197 |
+
value = value.unflatten(2, (attn.heads, -1))
|
| 198 |
+
|
| 199 |
+
query = attn.norm_q(query)
|
| 200 |
+
key = attn.norm_k(key)
|
| 201 |
+
|
| 202 |
+
txt_length = encoder_hidden_states.shape[1]
|
| 203 |
+
|
| 204 |
+
query = torch.cat([apply_rotary_emb_transposed(query[:, :-txt_length], image_rotary_emb), query[:, -txt_length:]], dim=1)
|
| 205 |
+
key = torch.cat([apply_rotary_emb_transposed(key[:, :-txt_length], image_rotary_emb), key[:, -txt_length:]], dim=1)
|
| 206 |
+
|
| 207 |
+
hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
| 208 |
+
hidden_states = hidden_states.flatten(-2)
|
| 209 |
+
|
| 210 |
+
hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
|
| 211 |
+
|
| 212 |
+
return hidden_states, encoder_hidden_states
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module):
|
| 216 |
+
def __init__(self, embedding_dim, pooled_projection_dim):
|
| 217 |
+
super().__init__()
|
| 218 |
+
|
| 219 |
+
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
| 220 |
+
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
| 221 |
+
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
| 222 |
+
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
|
| 223 |
+
|
| 224 |
+
def forward(self, timestep, guidance, pooled_projection):
|
| 225 |
+
timesteps_proj = self.time_proj(timestep)
|
| 226 |
+
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
|
| 227 |
+
|
| 228 |
+
guidance_proj = self.time_proj(guidance)
|
| 229 |
+
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype))
|
| 230 |
+
|
| 231 |
+
time_guidance_emb = timesteps_emb + guidance_emb
|
| 232 |
+
|
| 233 |
+
pooled_projections = self.text_embedder(pooled_projection)
|
| 234 |
+
conditioning = time_guidance_emb + pooled_projections
|
| 235 |
+
|
| 236 |
+
return conditioning
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
class CombinedTimestepTextProjEmbeddings(nn.Module):
|
| 240 |
+
def __init__(self, embedding_dim, pooled_projection_dim):
|
| 241 |
+
super().__init__()
|
| 242 |
+
|
| 243 |
+
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
| 244 |
+
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
| 245 |
+
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
|
| 246 |
+
|
| 247 |
+
def forward(self, timestep, pooled_projection):
|
| 248 |
+
timesteps_proj = self.time_proj(timestep)
|
| 249 |
+
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
|
| 250 |
+
|
| 251 |
+
pooled_projections = self.text_embedder(pooled_projection)
|
| 252 |
+
|
| 253 |
+
conditioning = timesteps_emb + pooled_projections
|
| 254 |
+
|
| 255 |
+
return conditioning
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
class HunyuanVideoAdaNorm(nn.Module):
|
| 259 |
+
def __init__(self, in_features: int, out_features: Optional[int] = None) -> None:
|
| 260 |
+
super().__init__()
|
| 261 |
+
|
| 262 |
+
out_features = out_features or 2 * in_features
|
| 263 |
+
self.linear = nn.Linear(in_features, out_features)
|
| 264 |
+
self.nonlinearity = nn.SiLU()
|
| 265 |
+
|
| 266 |
+
def forward(
|
| 267 |
+
self, temb: torch.Tensor
|
| 268 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 269 |
+
temb = self.linear(self.nonlinearity(temb))
|
| 270 |
+
gate_msa, gate_mlp = temb.chunk(2, dim=-1)
|
| 271 |
+
gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1)
|
| 272 |
+
return gate_msa, gate_mlp
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
class HunyuanVideoIndividualTokenRefinerBlock(nn.Module):
|
| 276 |
+
def __init__(
|
| 277 |
+
self,
|
| 278 |
+
num_attention_heads: int,
|
| 279 |
+
attention_head_dim: int,
|
| 280 |
+
mlp_width_ratio: str = 4.0,
|
| 281 |
+
mlp_drop_rate: float = 0.0,
|
| 282 |
+
attention_bias: bool = True,
|
| 283 |
+
) -> None:
|
| 284 |
+
super().__init__()
|
| 285 |
+
|
| 286 |
+
hidden_size = num_attention_heads * attention_head_dim
|
| 287 |
+
|
| 288 |
+
self.norm1 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
|
| 289 |
+
self.attn = Attention(
|
| 290 |
+
query_dim=hidden_size,
|
| 291 |
+
cross_attention_dim=None,
|
| 292 |
+
heads=num_attention_heads,
|
| 293 |
+
dim_head=attention_head_dim,
|
| 294 |
+
bias=attention_bias,
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
self.norm2 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
|
| 298 |
+
self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate)
|
| 299 |
+
|
| 300 |
+
self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size)
|
| 301 |
+
|
| 302 |
+
def forward(
|
| 303 |
+
self,
|
| 304 |
+
hidden_states: torch.Tensor,
|
| 305 |
+
temb: torch.Tensor,
|
| 306 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 307 |
+
) -> torch.Tensor:
|
| 308 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 309 |
+
|
| 310 |
+
attn_output = self.attn(
|
| 311 |
+
hidden_states=norm_hidden_states,
|
| 312 |
+
encoder_hidden_states=None,
|
| 313 |
+
attention_mask=attention_mask,
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
gate_msa, gate_mlp = self.norm_out(temb)
|
| 317 |
+
hidden_states = hidden_states + attn_output * gate_msa
|
| 318 |
+
|
| 319 |
+
ff_output = self.ff(self.norm2(hidden_states))
|
| 320 |
+
hidden_states = hidden_states + ff_output * gate_mlp
|
| 321 |
+
|
| 322 |
+
return hidden_states
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
class HunyuanVideoIndividualTokenRefiner(nn.Module):
|
| 326 |
+
def __init__(
|
| 327 |
+
self,
|
| 328 |
+
num_attention_heads: int,
|
| 329 |
+
attention_head_dim: int,
|
| 330 |
+
num_layers: int,
|
| 331 |
+
mlp_width_ratio: float = 4.0,
|
| 332 |
+
mlp_drop_rate: float = 0.0,
|
| 333 |
+
attention_bias: bool = True,
|
| 334 |
+
) -> None:
|
| 335 |
+
super().__init__()
|
| 336 |
+
|
| 337 |
+
self.refiner_blocks = nn.ModuleList(
|
| 338 |
+
[
|
| 339 |
+
HunyuanVideoIndividualTokenRefinerBlock(
|
| 340 |
+
num_attention_heads=num_attention_heads,
|
| 341 |
+
attention_head_dim=attention_head_dim,
|
| 342 |
+
mlp_width_ratio=mlp_width_ratio,
|
| 343 |
+
mlp_drop_rate=mlp_drop_rate,
|
| 344 |
+
attention_bias=attention_bias,
|
| 345 |
+
)
|
| 346 |
+
for _ in range(num_layers)
|
| 347 |
+
]
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
def forward(
|
| 351 |
+
self,
|
| 352 |
+
hidden_states: torch.Tensor,
|
| 353 |
+
temb: torch.Tensor,
|
| 354 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 355 |
+
) -> None:
|
| 356 |
+
self_attn_mask = None
|
| 357 |
+
if attention_mask is not None:
|
| 358 |
+
batch_size = attention_mask.shape[0]
|
| 359 |
+
seq_len = attention_mask.shape[1]
|
| 360 |
+
attention_mask = attention_mask.to(hidden_states.device).bool()
|
| 361 |
+
self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).expand(-1, -1, seq_len, -1)
|
| 362 |
+
self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
|
| 363 |
+
self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
|
| 364 |
+
self_attn_mask[:, :, :, 0] = True
|
| 365 |
+
|
| 366 |
+
for block in self.refiner_blocks:
|
| 367 |
+
hidden_states = block(hidden_states, temb, self_attn_mask)
|
| 368 |
+
|
| 369 |
+
return hidden_states
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
class HunyuanVideoTokenRefiner(nn.Module):
|
| 373 |
+
def __init__(
|
| 374 |
+
self,
|
| 375 |
+
in_channels: int,
|
| 376 |
+
num_attention_heads: int,
|
| 377 |
+
attention_head_dim: int,
|
| 378 |
+
num_layers: int,
|
| 379 |
+
mlp_ratio: float = 4.0,
|
| 380 |
+
mlp_drop_rate: float = 0.0,
|
| 381 |
+
attention_bias: bool = True,
|
| 382 |
+
) -> None:
|
| 383 |
+
super().__init__()
|
| 384 |
+
|
| 385 |
+
hidden_size = num_attention_heads * attention_head_dim
|
| 386 |
+
|
| 387 |
+
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
| 388 |
+
embedding_dim=hidden_size, pooled_projection_dim=in_channels
|
| 389 |
+
)
|
| 390 |
+
self.proj_in = nn.Linear(in_channels, hidden_size, bias=True)
|
| 391 |
+
self.token_refiner = HunyuanVideoIndividualTokenRefiner(
|
| 392 |
+
num_attention_heads=num_attention_heads,
|
| 393 |
+
attention_head_dim=attention_head_dim,
|
| 394 |
+
num_layers=num_layers,
|
| 395 |
+
mlp_width_ratio=mlp_ratio,
|
| 396 |
+
mlp_drop_rate=mlp_drop_rate,
|
| 397 |
+
attention_bias=attention_bias,
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
def forward(
|
| 401 |
+
self,
|
| 402 |
+
hidden_states: torch.Tensor,
|
| 403 |
+
timestep: torch.LongTensor,
|
| 404 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 405 |
+
) -> torch.Tensor:
|
| 406 |
+
if attention_mask is None:
|
| 407 |
+
pooled_projections = hidden_states.mean(dim=1)
|
| 408 |
+
else:
|
| 409 |
+
original_dtype = hidden_states.dtype
|
| 410 |
+
mask_float = attention_mask.float().unsqueeze(-1)
|
| 411 |
+
pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1)
|
| 412 |
+
pooled_projections = pooled_projections.to(original_dtype)
|
| 413 |
+
|
| 414 |
+
temb = self.time_text_embed(timestep, pooled_projections)
|
| 415 |
+
hidden_states = self.proj_in(hidden_states)
|
| 416 |
+
hidden_states = self.token_refiner(hidden_states, temb, attention_mask)
|
| 417 |
+
|
| 418 |
+
return hidden_states
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
class HunyuanVideoRotaryPosEmbed(nn.Module):
|
| 422 |
+
def __init__(self, rope_dim, theta):
|
| 423 |
+
super().__init__()
|
| 424 |
+
self.DT, self.DY, self.DX = rope_dim
|
| 425 |
+
self.theta = theta
|
| 426 |
+
|
| 427 |
+
@torch.no_grad()
|
| 428 |
+
def get_frequency(self, dim, pos):
|
| 429 |
+
T, H, W = pos.shape
|
| 430 |
+
freqs = 1.0 / (self.theta ** (torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device)[: (dim // 2)] / dim))
|
| 431 |
+
freqs = torch.outer(freqs, pos.reshape(-1)).unflatten(-1, (T, H, W)).repeat_interleave(2, dim=0)
|
| 432 |
+
return freqs.cos(), freqs.sin()
|
| 433 |
+
|
| 434 |
+
@torch.no_grad()
|
| 435 |
+
def forward_inner(self, frame_indices, height, width, device):
|
| 436 |
+
GT, GY, GX = torch.meshgrid(
|
| 437 |
+
frame_indices.to(device=device, dtype=torch.float32),
|
| 438 |
+
torch.arange(0, height, device=device, dtype=torch.float32),
|
| 439 |
+
torch.arange(0, width, device=device, dtype=torch.float32),
|
| 440 |
+
indexing="ij"
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
+
FCT, FST = self.get_frequency(self.DT, GT)
|
| 444 |
+
FCY, FSY = self.get_frequency(self.DY, GY)
|
| 445 |
+
FCX, FSX = self.get_frequency(self.DX, GX)
|
| 446 |
+
|
| 447 |
+
result = torch.cat([FCT, FCY, FCX, FST, FSY, FSX], dim=0)
|
| 448 |
+
|
| 449 |
+
return result.to(device)
|
| 450 |
+
|
| 451 |
+
@torch.no_grad()
|
| 452 |
+
def forward(self, frame_indices, height, width, device):
|
| 453 |
+
frame_indices = frame_indices.unbind(0)
|
| 454 |
+
results = [self.forward_inner(f, height, width, device) for f in frame_indices]
|
| 455 |
+
results = torch.stack(results, dim=0)
|
| 456 |
+
return results
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
class AdaLayerNormZero(nn.Module):
|
| 460 |
+
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
|
| 461 |
+
super().__init__()
|
| 462 |
+
self.silu = nn.SiLU()
|
| 463 |
+
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias)
|
| 464 |
+
if norm_type == "layer_norm":
|
| 465 |
+
self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
| 466 |
+
else:
|
| 467 |
+
raise ValueError(f"unknown norm_type {norm_type}")
|
| 468 |
+
|
| 469 |
+
def forward(
|
| 470 |
+
self,
|
| 471 |
+
x: torch.Tensor,
|
| 472 |
+
emb: Optional[torch.Tensor] = None,
|
| 473 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 474 |
+
emb = emb.unsqueeze(-2)
|
| 475 |
+
emb = self.linear(self.silu(emb))
|
| 476 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1)
|
| 477 |
+
x = self.norm(x) * (1 + scale_msa) + shift_msa
|
| 478 |
+
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
class AdaLayerNormZeroSingle(nn.Module):
|
| 482 |
+
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
|
| 483 |
+
super().__init__()
|
| 484 |
+
|
| 485 |
+
self.silu = nn.SiLU()
|
| 486 |
+
self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias)
|
| 487 |
+
if norm_type == "layer_norm":
|
| 488 |
+
self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
| 489 |
+
else:
|
| 490 |
+
raise ValueError(f"unknown norm_type {norm_type}")
|
| 491 |
+
|
| 492 |
+
def forward(
|
| 493 |
+
self,
|
| 494 |
+
x: torch.Tensor,
|
| 495 |
+
emb: Optional[torch.Tensor] = None,
|
| 496 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 497 |
+
emb = emb.unsqueeze(-2)
|
| 498 |
+
emb = self.linear(self.silu(emb))
|
| 499 |
+
shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1)
|
| 500 |
+
x = self.norm(x) * (1 + scale_msa) + shift_msa
|
| 501 |
+
return x, gate_msa
|
| 502 |
+
|
| 503 |
+
|
| 504 |
+
class AdaLayerNormContinuous(nn.Module):
|
| 505 |
+
def __init__(
|
| 506 |
+
self,
|
| 507 |
+
embedding_dim: int,
|
| 508 |
+
conditioning_embedding_dim: int,
|
| 509 |
+
elementwise_affine=True,
|
| 510 |
+
eps=1e-5,
|
| 511 |
+
bias=True,
|
| 512 |
+
norm_type="layer_norm",
|
| 513 |
+
):
|
| 514 |
+
super().__init__()
|
| 515 |
+
self.silu = nn.SiLU()
|
| 516 |
+
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias)
|
| 517 |
+
if norm_type == "layer_norm":
|
| 518 |
+
self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)
|
| 519 |
+
else:
|
| 520 |
+
raise ValueError(f"unknown norm_type {norm_type}")
|
| 521 |
+
|
| 522 |
+
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
|
| 523 |
+
emb = emb.unsqueeze(-2)
|
| 524 |
+
emb = self.linear(self.silu(emb))
|
| 525 |
+
scale, shift = emb.chunk(2, dim=-1)
|
| 526 |
+
x = self.norm(x) * (1 + scale) + shift
|
| 527 |
+
return x
|
| 528 |
+
|
| 529 |
+
|
| 530 |
+
class HunyuanVideoSingleTransformerBlock(nn.Module):
|
| 531 |
+
def __init__(
|
| 532 |
+
self,
|
| 533 |
+
num_attention_heads: int,
|
| 534 |
+
attention_head_dim: int,
|
| 535 |
+
mlp_ratio: float = 4.0,
|
| 536 |
+
qk_norm: str = "rms_norm",
|
| 537 |
+
) -> None:
|
| 538 |
+
super().__init__()
|
| 539 |
+
|
| 540 |
+
hidden_size = num_attention_heads * attention_head_dim
|
| 541 |
+
mlp_dim = int(hidden_size * mlp_ratio)
|
| 542 |
+
|
| 543 |
+
self.attn = Attention(
|
| 544 |
+
query_dim=hidden_size,
|
| 545 |
+
cross_attention_dim=None,
|
| 546 |
+
dim_head=attention_head_dim,
|
| 547 |
+
heads=num_attention_heads,
|
| 548 |
+
out_dim=hidden_size,
|
| 549 |
+
bias=True,
|
| 550 |
+
processor=HunyuanAttnProcessorFlashAttnSingle(),
|
| 551 |
+
qk_norm=qk_norm,
|
| 552 |
+
eps=1e-6,
|
| 553 |
+
pre_only=True,
|
| 554 |
+
)
|
| 555 |
+
|
| 556 |
+
self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm")
|
| 557 |
+
self.proj_mlp = nn.Linear(hidden_size, mlp_dim)
|
| 558 |
+
self.act_mlp = nn.GELU(approximate="tanh")
|
| 559 |
+
self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size)
|
| 560 |
+
|
| 561 |
+
def forward(
|
| 562 |
+
self,
|
| 563 |
+
hidden_states: torch.Tensor,
|
| 564 |
+
encoder_hidden_states: torch.Tensor,
|
| 565 |
+
temb: torch.Tensor,
|
| 566 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 567 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 568 |
+
) -> torch.Tensor:
|
| 569 |
+
text_seq_length = encoder_hidden_states.shape[1]
|
| 570 |
+
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
| 571 |
+
|
| 572 |
+
residual = hidden_states
|
| 573 |
+
|
| 574 |
+
# 1. Input normalization
|
| 575 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
| 576 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
| 577 |
+
|
| 578 |
+
norm_hidden_states, norm_encoder_hidden_states = (
|
| 579 |
+
norm_hidden_states[:, :-text_seq_length, :],
|
| 580 |
+
norm_hidden_states[:, -text_seq_length:, :],
|
| 581 |
+
)
|
| 582 |
+
|
| 583 |
+
# 2. Attention
|
| 584 |
+
attn_output, context_attn_output = self.attn(
|
| 585 |
+
hidden_states=norm_hidden_states,
|
| 586 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
| 587 |
+
attention_mask=attention_mask,
|
| 588 |
+
image_rotary_emb=image_rotary_emb,
|
| 589 |
+
)
|
| 590 |
+
attn_output = torch.cat([attn_output, context_attn_output], dim=1)
|
| 591 |
+
|
| 592 |
+
# 3. Modulation and residual connection
|
| 593 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
| 594 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
| 595 |
+
hidden_states = hidden_states + residual
|
| 596 |
+
|
| 597 |
+
hidden_states, encoder_hidden_states = (
|
| 598 |
+
hidden_states[:, :-text_seq_length, :],
|
| 599 |
+
hidden_states[:, -text_seq_length:, :],
|
| 600 |
+
)
|
| 601 |
+
return hidden_states, encoder_hidden_states
|
| 602 |
+
|
| 603 |
+
|
| 604 |
+
class HunyuanVideoTransformerBlock(nn.Module):
|
| 605 |
+
def __init__(
|
| 606 |
+
self,
|
| 607 |
+
num_attention_heads: int,
|
| 608 |
+
attention_head_dim: int,
|
| 609 |
+
mlp_ratio: float,
|
| 610 |
+
qk_norm: str = "rms_norm",
|
| 611 |
+
) -> None:
|
| 612 |
+
super().__init__()
|
| 613 |
+
|
| 614 |
+
hidden_size = num_attention_heads * attention_head_dim
|
| 615 |
+
|
| 616 |
+
self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
|
| 617 |
+
self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
|
| 618 |
+
|
| 619 |
+
self.attn = Attention(
|
| 620 |
+
query_dim=hidden_size,
|
| 621 |
+
cross_attention_dim=None,
|
| 622 |
+
added_kv_proj_dim=hidden_size,
|
| 623 |
+
dim_head=attention_head_dim,
|
| 624 |
+
heads=num_attention_heads,
|
| 625 |
+
out_dim=hidden_size,
|
| 626 |
+
context_pre_only=False,
|
| 627 |
+
bias=True,
|
| 628 |
+
processor=HunyuanAttnProcessorFlashAttnDouble(),
|
| 629 |
+
qk_norm=qk_norm,
|
| 630 |
+
eps=1e-6,
|
| 631 |
+
)
|
| 632 |
+
|
| 633 |
+
self.norm2 = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
| 634 |
+
self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
|
| 635 |
+
|
| 636 |
+
self.norm2_context = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
| 637 |
+
self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
|
| 638 |
+
|
| 639 |
+
def forward(
|
| 640 |
+
self,
|
| 641 |
+
hidden_states: torch.Tensor,
|
| 642 |
+
encoder_hidden_states: torch.Tensor,
|
| 643 |
+
temb: torch.Tensor,
|
| 644 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 645 |
+
freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 646 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 647 |
+
# 1. Input normalization
|
| 648 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
| 649 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(encoder_hidden_states, emb=temb)
|
| 650 |
+
|
| 651 |
+
# 2. Joint attention
|
| 652 |
+
attn_output, context_attn_output = self.attn(
|
| 653 |
+
hidden_states=norm_hidden_states,
|
| 654 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
| 655 |
+
attention_mask=attention_mask,
|
| 656 |
+
image_rotary_emb=freqs_cis,
|
| 657 |
+
)
|
| 658 |
+
|
| 659 |
+
# 3. Modulation and residual connection
|
| 660 |
+
hidden_states = hidden_states + attn_output * gate_msa
|
| 661 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa
|
| 662 |
+
|
| 663 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 664 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
| 665 |
+
|
| 666 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
| 667 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp
|
| 668 |
+
|
| 669 |
+
# 4. Feed-forward
|
| 670 |
+
ff_output = self.ff(norm_hidden_states)
|
| 671 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
| 672 |
+
|
| 673 |
+
hidden_states = hidden_states + gate_mlp * ff_output
|
| 674 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp * context_ff_output
|
| 675 |
+
|
| 676 |
+
return hidden_states, encoder_hidden_states
|
| 677 |
+
|
| 678 |
+
|
| 679 |
+
class ClipVisionProjection(nn.Module):
|
| 680 |
+
def __init__(self, in_channels, out_channels):
|
| 681 |
+
super().__init__()
|
| 682 |
+
self.up = nn.Linear(in_channels, out_channels * 3)
|
| 683 |
+
self.down = nn.Linear(out_channels * 3, out_channels)
|
| 684 |
+
|
| 685 |
+
def forward(self, x):
|
| 686 |
+
projected_x = self.down(nn.functional.silu(self.up(x)))
|
| 687 |
+
return projected_x
|
| 688 |
+
|
| 689 |
+
|
| 690 |
+
class HunyuanVideoPatchEmbed(nn.Module):
|
| 691 |
+
def __init__(self, patch_size, in_chans, embed_dim):
|
| 692 |
+
super().__init__()
|
| 693 |
+
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
| 694 |
+
|
| 695 |
+
|
| 696 |
+
class HunyuanVideoPatchEmbedForCleanLatents(nn.Module):
|
| 697 |
+
def __init__(self, inner_dim):
|
| 698 |
+
super().__init__()
|
| 699 |
+
self.proj = nn.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2))
|
| 700 |
+
self.proj_2x = nn.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4))
|
| 701 |
+
self.proj_4x = nn.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8))
|
| 702 |
+
|
| 703 |
+
@torch.no_grad()
|
| 704 |
+
def initialize_weight_from_another_conv3d(self, another_layer):
|
| 705 |
+
weight = another_layer.weight.detach().clone()
|
| 706 |
+
bias = another_layer.bias.detach().clone()
|
| 707 |
+
|
| 708 |
+
sd = {
|
| 709 |
+
'proj.weight': weight.clone(),
|
| 710 |
+
'proj.bias': bias.clone(),
|
| 711 |
+
'proj_2x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=2, hk=2, wk=2) / 8.0,
|
| 712 |
+
'proj_2x.bias': bias.clone(),
|
| 713 |
+
'proj_4x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=4, hk=4, wk=4) / 64.0,
|
| 714 |
+
'proj_4x.bias': bias.clone(),
|
| 715 |
+
}
|
| 716 |
+
|
| 717 |
+
sd = {k: v.clone() for k, v in sd.items()}
|
| 718 |
+
|
| 719 |
+
self.load_state_dict(sd)
|
| 720 |
+
return
|
| 721 |
+
|
| 722 |
+
|
| 723 |
+
class HunyuanVideoTransformer3DModelPacked(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
| 724 |
+
@register_to_config
|
| 725 |
+
def __init__(
|
| 726 |
+
self,
|
| 727 |
+
in_channels: int = 16,
|
| 728 |
+
out_channels: int = 16,
|
| 729 |
+
num_attention_heads: int = 24,
|
| 730 |
+
attention_head_dim: int = 128,
|
| 731 |
+
num_layers: int = 20,
|
| 732 |
+
num_single_layers: int = 40,
|
| 733 |
+
num_refiner_layers: int = 2,
|
| 734 |
+
mlp_ratio: float = 4.0,
|
| 735 |
+
patch_size: int = 2,
|
| 736 |
+
patch_size_t: int = 1,
|
| 737 |
+
qk_norm: str = "rms_norm",
|
| 738 |
+
guidance_embeds: bool = True,
|
| 739 |
+
text_embed_dim: int = 4096,
|
| 740 |
+
pooled_projection_dim: int = 768,
|
| 741 |
+
rope_theta: float = 256.0,
|
| 742 |
+
rope_axes_dim: Tuple[int] = (16, 56, 56),
|
| 743 |
+
has_image_proj=False,
|
| 744 |
+
image_proj_dim=1152,
|
| 745 |
+
has_clean_x_embedder=False,
|
| 746 |
+
) -> None:
|
| 747 |
+
super().__init__()
|
| 748 |
+
|
| 749 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 750 |
+
out_channels = out_channels or in_channels
|
| 751 |
+
|
| 752 |
+
# 1. Latent and condition embedders
|
| 753 |
+
self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim)
|
| 754 |
+
self.context_embedder = HunyuanVideoTokenRefiner(
|
| 755 |
+
text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers
|
| 756 |
+
)
|
| 757 |
+
self.time_text_embed = CombinedTimestepGuidanceTextProjEmbeddings(inner_dim, pooled_projection_dim)
|
| 758 |
+
|
| 759 |
+
self.clean_x_embedder = None
|
| 760 |
+
self.image_projection = None
|
| 761 |
+
|
| 762 |
+
# 2. RoPE
|
| 763 |
+
self.rope = HunyuanVideoRotaryPosEmbed(rope_axes_dim, rope_theta)
|
| 764 |
+
|
| 765 |
+
# 3. Dual stream transformer blocks
|
| 766 |
+
self.transformer_blocks = nn.ModuleList(
|
| 767 |
+
[
|
| 768 |
+
HunyuanVideoTransformerBlock(
|
| 769 |
+
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
| 770 |
+
)
|
| 771 |
+
for _ in range(num_layers)
|
| 772 |
+
]
|
| 773 |
+
)
|
| 774 |
+
|
| 775 |
+
# 4. Single stream transformer blocks
|
| 776 |
+
self.single_transformer_blocks = nn.ModuleList(
|
| 777 |
+
[
|
| 778 |
+
HunyuanVideoSingleTransformerBlock(
|
| 779 |
+
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
| 780 |
+
)
|
| 781 |
+
for _ in range(num_single_layers)
|
| 782 |
+
]
|
| 783 |
+
)
|
| 784 |
+
|
| 785 |
+
# 5. Output projection
|
| 786 |
+
self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6)
|
| 787 |
+
self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels)
|
| 788 |
+
|
| 789 |
+
self.inner_dim = inner_dim
|
| 790 |
+
self.use_gradient_checkpointing = False
|
| 791 |
+
self.enable_teacache = False
|
| 792 |
+
|
| 793 |
+
if has_image_proj:
|
| 794 |
+
self.install_image_projection(image_proj_dim)
|
| 795 |
+
|
| 796 |
+
if has_clean_x_embedder:
|
| 797 |
+
self.install_clean_x_embedder()
|
| 798 |
+
|
| 799 |
+
self.high_quality_fp32_output_for_inference = False
|
| 800 |
+
|
| 801 |
+
def install_image_projection(self, in_channels):
|
| 802 |
+
self.image_projection = ClipVisionProjection(in_channels=in_channels, out_channels=self.inner_dim)
|
| 803 |
+
self.config['has_image_proj'] = True
|
| 804 |
+
self.config['image_proj_dim'] = in_channels
|
| 805 |
+
|
| 806 |
+
def install_clean_x_embedder(self):
|
| 807 |
+
self.clean_x_embedder = HunyuanVideoPatchEmbedForCleanLatents(self.inner_dim)
|
| 808 |
+
self.config['has_clean_x_embedder'] = True
|
| 809 |
+
|
| 810 |
+
def enable_gradient_checkpointing(self):
|
| 811 |
+
self.use_gradient_checkpointing = True
|
| 812 |
+
print('self.use_gradient_checkpointing = True')
|
| 813 |
+
|
| 814 |
+
def disable_gradient_checkpointing(self):
|
| 815 |
+
self.use_gradient_checkpointing = False
|
| 816 |
+
print('self.use_gradient_checkpointing = False')
|
| 817 |
+
|
| 818 |
+
def initialize_teacache(self, enable_teacache=True, num_steps=25, rel_l1_thresh=0.15):
|
| 819 |
+
self.enable_teacache = enable_teacache
|
| 820 |
+
self.cnt = 0
|
| 821 |
+
self.num_steps = num_steps
|
| 822 |
+
self.rel_l1_thresh = rel_l1_thresh # 0.1 for 1.6x speedup, 0.15 for 2.1x speedup
|
| 823 |
+
self.accumulated_rel_l1_distance = 0
|
| 824 |
+
self.previous_modulated_input = None
|
| 825 |
+
self.previous_residual = None
|
| 826 |
+
self.teacache_rescale_func = np.poly1d([7.33226126e+02, -4.01131952e+02, 6.75869174e+01, -3.14987800e+00, 9.61237896e-02])
|
| 827 |
+
|
| 828 |
+
def gradient_checkpointing_method(self, block, *args):
|
| 829 |
+
if self.use_gradient_checkpointing:
|
| 830 |
+
result = torch.utils.checkpoint.checkpoint(block, *args, use_reentrant=False)
|
| 831 |
+
else:
|
| 832 |
+
result = block(*args)
|
| 833 |
+
return result
|
| 834 |
+
|
| 835 |
+
def process_input_hidden_states(
|
| 836 |
+
self,
|
| 837 |
+
latents, latent_indices=None,
|
| 838 |
+
clean_latents=None, clean_latent_indices=None,
|
| 839 |
+
clean_latents_2x=None, clean_latent_2x_indices=None,
|
| 840 |
+
clean_latents_4x=None, clean_latent_4x_indices=None
|
| 841 |
+
):
|
| 842 |
+
hidden_states = self.gradient_checkpointing_method(self.x_embedder.proj, latents)
|
| 843 |
+
B, C, T, H, W = hidden_states.shape
|
| 844 |
+
|
| 845 |
+
if latent_indices is None:
|
| 846 |
+
latent_indices = torch.arange(0, T).unsqueeze(0).expand(B, -1)
|
| 847 |
+
|
| 848 |
+
hidden_states = hidden_states.flatten(2).transpose(1, 2)
|
| 849 |
+
|
| 850 |
+
rope_freqs = self.rope(frame_indices=latent_indices, height=H, width=W, device=hidden_states.device)
|
| 851 |
+
rope_freqs = rope_freqs.flatten(2).transpose(1, 2)
|
| 852 |
+
|
| 853 |
+
if clean_latents is not None and clean_latent_indices is not None:
|
| 854 |
+
clean_latents = clean_latents.to(hidden_states)
|
| 855 |
+
clean_latents = self.gradient_checkpointing_method(self.clean_x_embedder.proj, clean_latents)
|
| 856 |
+
clean_latents = clean_latents.flatten(2).transpose(1, 2)
|
| 857 |
+
|
| 858 |
+
clean_latent_rope_freqs = self.rope(frame_indices=clean_latent_indices, height=H, width=W, device=clean_latents.device)
|
| 859 |
+
clean_latent_rope_freqs = clean_latent_rope_freqs.flatten(2).transpose(1, 2)
|
| 860 |
+
|
| 861 |
+
hidden_states = torch.cat([clean_latents, hidden_states], dim=1)
|
| 862 |
+
rope_freqs = torch.cat([clean_latent_rope_freqs, rope_freqs], dim=1)
|
| 863 |
+
|
| 864 |
+
if clean_latents_2x is not None and clean_latent_2x_indices is not None:
|
| 865 |
+
clean_latents_2x = clean_latents_2x.to(hidden_states)
|
| 866 |
+
clean_latents_2x = pad_for_3d_conv(clean_latents_2x, (2, 4, 4))
|
| 867 |
+
clean_latents_2x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_2x, clean_latents_2x)
|
| 868 |
+
clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2)
|
| 869 |
+
|
| 870 |
+
clean_latent_2x_rope_freqs = self.rope(frame_indices=clean_latent_2x_indices, height=H, width=W, device=clean_latents_2x.device)
|
| 871 |
+
clean_latent_2x_rope_freqs = pad_for_3d_conv(clean_latent_2x_rope_freqs, (2, 2, 2))
|
| 872 |
+
clean_latent_2x_rope_freqs = center_down_sample_3d(clean_latent_2x_rope_freqs, (2, 2, 2))
|
| 873 |
+
clean_latent_2x_rope_freqs = clean_latent_2x_rope_freqs.flatten(2).transpose(1, 2)
|
| 874 |
+
|
| 875 |
+
hidden_states = torch.cat([clean_latents_2x, hidden_states], dim=1)
|
| 876 |
+
rope_freqs = torch.cat([clean_latent_2x_rope_freqs, rope_freqs], dim=1)
|
| 877 |
+
|
| 878 |
+
if clean_latents_4x is not None and clean_latent_4x_indices is not None:
|
| 879 |
+
clean_latents_4x = clean_latents_4x.to(hidden_states)
|
| 880 |
+
clean_latents_4x = pad_for_3d_conv(clean_latents_4x, (4, 8, 8))
|
| 881 |
+
clean_latents_4x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_4x, clean_latents_4x)
|
| 882 |
+
clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2)
|
| 883 |
+
|
| 884 |
+
clean_latent_4x_rope_freqs = self.rope(frame_indices=clean_latent_4x_indices, height=H, width=W, device=clean_latents_4x.device)
|
| 885 |
+
clean_latent_4x_rope_freqs = pad_for_3d_conv(clean_latent_4x_rope_freqs, (4, 4, 4))
|
| 886 |
+
clean_latent_4x_rope_freqs = center_down_sample_3d(clean_latent_4x_rope_freqs, (4, 4, 4))
|
| 887 |
+
clean_latent_4x_rope_freqs = clean_latent_4x_rope_freqs.flatten(2).transpose(1, 2)
|
| 888 |
+
|
| 889 |
+
hidden_states = torch.cat([clean_latents_4x, hidden_states], dim=1)
|
| 890 |
+
rope_freqs = torch.cat([clean_latent_4x_rope_freqs, rope_freqs], dim=1)
|
| 891 |
+
|
| 892 |
+
return hidden_states, rope_freqs
|
| 893 |
+
|
| 894 |
+
def forward(
|
| 895 |
+
self,
|
| 896 |
+
hidden_states, timestep, encoder_hidden_states, encoder_attention_mask, pooled_projections, guidance,
|
| 897 |
+
latent_indices=None,
|
| 898 |
+
clean_latents=None, clean_latent_indices=None,
|
| 899 |
+
clean_latents_2x=None, clean_latent_2x_indices=None,
|
| 900 |
+
clean_latents_4x=None, clean_latent_4x_indices=None,
|
| 901 |
+
image_embeddings=None,
|
| 902 |
+
attention_kwargs=None, return_dict=True
|
| 903 |
+
):
|
| 904 |
+
|
| 905 |
+
if attention_kwargs is None:
|
| 906 |
+
attention_kwargs = {}
|
| 907 |
+
|
| 908 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
| 909 |
+
p, p_t = self.config['patch_size'], self.config['patch_size_t']
|
| 910 |
+
post_patch_num_frames = num_frames // p_t
|
| 911 |
+
post_patch_height = height // p
|
| 912 |
+
post_patch_width = width // p
|
| 913 |
+
original_context_length = post_patch_num_frames * post_patch_height * post_patch_width
|
| 914 |
+
|
| 915 |
+
hidden_states, rope_freqs = self.process_input_hidden_states(hidden_states, latent_indices, clean_latents, clean_latent_indices, clean_latents_2x, clean_latent_2x_indices, clean_latents_4x, clean_latent_4x_indices)
|
| 916 |
+
|
| 917 |
+
temb = self.gradient_checkpointing_method(self.time_text_embed, timestep, guidance, pooled_projections)
|
| 918 |
+
encoder_hidden_states = self.gradient_checkpointing_method(self.context_embedder, encoder_hidden_states, timestep, encoder_attention_mask)
|
| 919 |
+
|
| 920 |
+
if self.image_projection is not None:
|
| 921 |
+
assert image_embeddings is not None, 'You must use image embeddings!'
|
| 922 |
+
extra_encoder_hidden_states = self.gradient_checkpointing_method(self.image_projection, image_embeddings)
|
| 923 |
+
extra_attention_mask = torch.ones((batch_size, extra_encoder_hidden_states.shape[1]), dtype=encoder_attention_mask.dtype, device=encoder_attention_mask.device)
|
| 924 |
+
|
| 925 |
+
# must cat before (not after) encoder_hidden_states, due to attn masking
|
| 926 |
+
encoder_hidden_states = torch.cat([extra_encoder_hidden_states, encoder_hidden_states], dim=1)
|
| 927 |
+
encoder_attention_mask = torch.cat([extra_attention_mask, encoder_attention_mask], dim=1)
|
| 928 |
+
|
| 929 |
+
with torch.no_grad():
|
| 930 |
+
if batch_size == 1:
|
| 931 |
+
# When batch size is 1, we do not need any masks or var-len funcs since cropping is mathematically same to what we want
|
| 932 |
+
# If they are not same, then their impls are wrong. Ours are always the correct one.
|
| 933 |
+
text_len = encoder_attention_mask.sum().item()
|
| 934 |
+
encoder_hidden_states = encoder_hidden_states[:, :text_len]
|
| 935 |
+
attention_mask = None, None, None, None
|
| 936 |
+
else:
|
| 937 |
+
img_seq_len = hidden_states.shape[1]
|
| 938 |
+
txt_seq_len = encoder_hidden_states.shape[1]
|
| 939 |
+
|
| 940 |
+
cu_seqlens_q = get_cu_seqlens(encoder_attention_mask, img_seq_len)
|
| 941 |
+
cu_seqlens_kv = cu_seqlens_q
|
| 942 |
+
max_seqlen_q = img_seq_len + txt_seq_len
|
| 943 |
+
max_seqlen_kv = max_seqlen_q
|
| 944 |
+
|
| 945 |
+
attention_mask = cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv
|
| 946 |
+
|
| 947 |
+
if self.enable_teacache:
|
| 948 |
+
modulated_inp = self.transformer_blocks[0].norm1(hidden_states, emb=temb)[0]
|
| 949 |
+
|
| 950 |
+
if self.cnt == 0 or self.cnt == self.num_steps-1:
|
| 951 |
+
should_calc = True
|
| 952 |
+
self.accumulated_rel_l1_distance = 0
|
| 953 |
+
else:
|
| 954 |
+
curr_rel_l1 = ((modulated_inp - self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()
|
| 955 |
+
self.accumulated_rel_l1_distance += self.teacache_rescale_func(curr_rel_l1)
|
| 956 |
+
should_calc = self.accumulated_rel_l1_distance >= self.rel_l1_thresh
|
| 957 |
+
|
| 958 |
+
if should_calc:
|
| 959 |
+
self.accumulated_rel_l1_distance = 0
|
| 960 |
+
|
| 961 |
+
self.previous_modulated_input = modulated_inp
|
| 962 |
+
self.cnt += 1
|
| 963 |
+
|
| 964 |
+
if self.cnt == self.num_steps:
|
| 965 |
+
self.cnt = 0
|
| 966 |
+
|
| 967 |
+
if not should_calc:
|
| 968 |
+
hidden_states = hidden_states + self.previous_residual
|
| 969 |
+
else:
|
| 970 |
+
ori_hidden_states = hidden_states.clone()
|
| 971 |
+
|
| 972 |
+
for block_id, block in enumerate(self.transformer_blocks):
|
| 973 |
+
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
| 974 |
+
block,
|
| 975 |
+
hidden_states,
|
| 976 |
+
encoder_hidden_states,
|
| 977 |
+
temb,
|
| 978 |
+
attention_mask,
|
| 979 |
+
rope_freqs
|
| 980 |
+
)
|
| 981 |
+
|
| 982 |
+
for block_id, block in enumerate(self.single_transformer_blocks):
|
| 983 |
+
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
| 984 |
+
block,
|
| 985 |
+
hidden_states,
|
| 986 |
+
encoder_hidden_states,
|
| 987 |
+
temb,
|
| 988 |
+
attention_mask,
|
| 989 |
+
rope_freqs
|
| 990 |
+
)
|
| 991 |
+
|
| 992 |
+
self.previous_residual = hidden_states - ori_hidden_states
|
| 993 |
+
else:
|
| 994 |
+
for block_id, block in enumerate(self.transformer_blocks):
|
| 995 |
+
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
| 996 |
+
block,
|
| 997 |
+
hidden_states,
|
| 998 |
+
encoder_hidden_states,
|
| 999 |
+
temb,
|
| 1000 |
+
attention_mask,
|
| 1001 |
+
rope_freqs
|
| 1002 |
+
)
|
| 1003 |
+
|
| 1004 |
+
for block_id, block in enumerate(self.single_transformer_blocks):
|
| 1005 |
+
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
| 1006 |
+
block,
|
| 1007 |
+
hidden_states,
|
| 1008 |
+
encoder_hidden_states,
|
| 1009 |
+
temb,
|
| 1010 |
+
attention_mask,
|
| 1011 |
+
rope_freqs
|
| 1012 |
+
)
|
| 1013 |
+
|
| 1014 |
+
hidden_states = self.gradient_checkpointing_method(self.norm_out, hidden_states, temb)
|
| 1015 |
+
|
| 1016 |
+
hidden_states = hidden_states[:, -original_context_length:, :]
|
| 1017 |
+
|
| 1018 |
+
if self.high_quality_fp32_output_for_inference:
|
| 1019 |
+
hidden_states = hidden_states.to(dtype=torch.float32)
|
| 1020 |
+
if self.proj_out.weight.dtype != torch.float32:
|
| 1021 |
+
self.proj_out.to(dtype=torch.float32)
|
| 1022 |
+
|
| 1023 |
+
hidden_states = self.gradient_checkpointing_method(self.proj_out, hidden_states)
|
| 1024 |
+
|
| 1025 |
+
hidden_states = einops.rearrange(hidden_states, 'b (t h w) (c pt ph pw) -> b c (t pt) (h ph) (w pw)',
|
| 1026 |
+
t=post_patch_num_frames, h=post_patch_height, w=post_patch_width,
|
| 1027 |
+
pt=p_t, ph=p, pw=p)
|
| 1028 |
+
|
| 1029 |
+
if return_dict:
|
| 1030 |
+
return Transformer2DModelOutput(sample=hidden_states)
|
| 1031 |
+
|
| 1032 |
+
return hidden_states,
|