Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import spaces | |
| import torch | |
| import random | |
| from PIL import Image | |
| from kontext_pipeline import FluxKontextPipeline | |
| from diffusers import FluxTransformer2DModel | |
| from diffusers.utils import load_image | |
| from huggingface_hub import hf_hub_download | |
| kontext_path = hf_hub_download(repo_id="diffusers/kontext", filename="kontext.safetensors") | |
| MAX_SEED = np.iinfo(np.int32).max | |
| transformer = FluxTransformer2DModel.from_single_file(kontext_path, torch_dtype=torch.bfloat16) | |
| pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16).to("cuda") | |
| def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, progress=gr.Progress(track_tqdm=True)): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| input_image = input_image.convert("RGB") | |
| original_width, original_height = input_image.size | |
| if original_width >= original_height: | |
| new_width = 1024 | |
| new_height = int(original_height * (new_width / original_width)) | |
| new_height = round(new_height / 64) * 64 | |
| else: | |
| new_height = 1024 | |
| new_width = int(original_width * (new_height / original_height)) | |
| new_width = round(new_width / 64) * 64 | |
| input_image_resized = input_image.resize((new_width, new_height), Image.LANCZOS) | |
| image = pipe( | |
| image=input_image_resized, | |
| prompt=prompt, | |
| guidance_scale=guidance_scale, | |
| width=new_width, | |
| height=new_height, | |
| generator=torch.Generator().manual_seed(seed), | |
| ).images[0] | |
| return image, seed | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 960px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f"""# FLUX.1 Kontext [dev] | |
| """) | |
| input_image = gr.Image(label="Upload the image for editing", type="pil") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| with gr.Column(): | |
| result = gr.Image(label="Result", show_label=False) | |
| reuse_button = gr.Button("Reuse this image", scale=0) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=1, | |
| maximum=10, | |
| step=0.1, | |
| value=2.5, | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn = infer, | |
| inputs = [input_image, prompt, seed, randomize_seed, guidance_scale], | |
| outputs = [result, seed] | |
| ) | |
| reuse_button.click( | |
| fn = lambda image: image, | |
| inputs = [result], | |
| outputs = [input_image] | |
| ) | |
| demo.launch() |