# Copied from https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/schedulers/scheduling_unipc_multistep.py # Convert unipc for flow matching # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import math from typing import List from typing import Optional from typing import Tuple from typing import Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin from diffusers.configuration_utils import register_to_config from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.schedulers.scheduling_utils import SchedulerOutput from diffusers.utils import deprecate class FlowUniPCMultistepScheduler(SchedulerMixin, ConfigMixin): """ `UniPCMultistepScheduler` is a training-free framework designed for the fast sampling of diffusion models. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving. Args: num_train_timesteps (`int`, defaults to 1000): The number of diffusion steps to train the model. solver_order (`int`, default `2`): The UniPC order which can be any positive integer. The effective order of accuracy is `solver_order + 1` due to the UniC. It is recommended to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling. prediction_type (`str`, defaults to "flow_prediction"): Prediction type of the scheduler function; must be `flow_prediction` for this scheduler, which predicts the flow of the diffusion process. thresholding (`bool`, defaults to `False`): Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion. dynamic_thresholding_ratio (`float`, defaults to 0.995): The ratio for the dynamic thresholding method. Valid only when `thresholding=True`. sample_max_value (`float`, defaults to 1.0): The threshold value for dynamic thresholding. Valid only when `thresholding=True` and `predict_x0=True`. predict_x0 (`bool`, defaults to `True`): Whether to use the updating algorithm on the predicted x0. solver_type (`str`, default `bh2`): Solver type for UniPC. It is recommended to use `bh1` for unconditional sampling when steps < 10, and `bh2` otherwise. lower_order_final (`bool`, default `True`): Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10. disable_corrector (`list`, default `[]`): Decides which step to disable the corrector to mitigate the misalignment between `epsilon_theta(x_t, c)` and `epsilon_theta(x_t^c, c)` which can influence convergence for a large guidance scale. Corrector is usually disabled during the first few steps. solver_p (`SchedulerMixin`, default `None`): Any other scheduler that if specified, the algorithm becomes `solver_p + UniC`. use_karras_sigmas (`bool`, *optional*, defaults to `False`): Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`, the sigmas are determined according to a sequence of noise levels {σi}. use_exponential_sigmas (`bool`, *optional*, defaults to `False`): Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process. timestep_spacing (`str`, defaults to `"linspace"`): The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. steps_offset (`int`, defaults to 0): An offset added to the inference steps, as required by some model families. final_sigmas_type (`str`, defaults to `"zero"`): The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0. """ _compatibles = [e.name for e in KarrasDiffusionSchedulers] order = 1 @register_to_config def __init__( self, num_train_timesteps: int = 1000, solver_order: int = 2, prediction_type: str = "flow_prediction", shift: Optional[float] = 1.0, use_dynamic_shifting=False, thresholding: bool = False, dynamic_thresholding_ratio: float = 0.995, sample_max_value: float = 1.0, predict_x0: bool = True, solver_type: str = "bh2", lower_order_final: bool = True, disable_corrector: List[int] = [], solver_p: SchedulerMixin = None, timestep_spacing: str = "linspace", steps_offset: int = 0, final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min" ): if solver_type not in ["bh1", "bh2"]: if solver_type in ["midpoint", "heun", "logrho"]: self.register_to_config(solver_type="bh2") else: raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}") self.predict_x0 = predict_x0 # setable values self.num_inference_steps = None alphas = np.linspace(1, 1 / num_train_timesteps, num_train_timesteps)[::-1].copy() sigmas = 1.0 - alphas sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32) if not use_dynamic_shifting: # when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution sigmas = shift * sigmas / (1 + (shift - 1) * sigmas) # pyright: ignore self.sigmas = sigmas self.timesteps = sigmas * num_train_timesteps self.model_outputs = [None] * solver_order self.timestep_list = [None] * solver_order self.lower_order_nums = 0 self.disable_corrector = disable_corrector self.solver_p = solver_p self.last_sample = None self._step_index = None self._begin_index = None self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication self.sigma_min = self.sigmas[-1].item() self.sigma_max = self.sigmas[0].item() @property def step_index(self): """ The index counter for current timestep. It will increase 1 after each scheduler step. """ return self._step_index @property def begin_index(self): """ The index for the first timestep. It should be set from pipeline with `set_begin_index` method. """ return self._begin_index # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index def set_begin_index(self, begin_index: int = 0): """ Sets the begin index for the scheduler. This function should be run from pipeline before the inference. Args: begin_index (`int`): The begin index for the scheduler. """ self._begin_index = begin_index # Modified from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler.set_timesteps def set_timesteps( self, num_inference_steps: Union[int, None] = None, device: Union[str, torch.device] = None, sigmas: Optional[List[float]] = None, mu: Optional[Union[float, None]] = None, shift: Optional[Union[float, None]] = None, ): """ Sets the discrete timesteps used for the diffusion chain (to be run before inference). Args: num_inference_steps (`int`): Total number of the spacing of the time steps. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """ if self.config.use_dynamic_shifting and mu is None: raise ValueError(" you have to pass a value for `mu` when `use_dynamic_shifting` is set to be `True`") if sigmas is None: sigmas = np.linspace(self.sigma_max, self.sigma_min, num_inference_steps + 1).copy()[:-1] # pyright: ignore if self.config.use_dynamic_shifting: sigmas = self.time_shift(mu, 1.0, sigmas) # pyright: ignore else: if shift is None: shift = self.config.shift sigmas = shift * sigmas / (1 + (shift - 1) * sigmas) # pyright: ignore if self.config.final_sigmas_type == "sigma_min": sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5 elif self.config.final_sigmas_type == "zero": sigma_last = 0 else: raise ValueError( f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}" ) timesteps = sigmas * self.config.num_train_timesteps sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32) # pyright: ignore self.sigmas = torch.from_numpy(sigmas) self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64) self.num_inference_steps = len(timesteps) self.model_outputs = [ None, ] * self.config.solver_order self.lower_order_nums = 0 self.last_sample = None if self.solver_p: self.solver_p.set_timesteps(self.num_inference_steps, device=device) # add an index counter for schedulers that allow duplicated timesteps self._step_index = None self._begin_index = None self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: """ "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing pixels from saturation at each step. We find that dynamic thresholding results in significantly better photorealism as well as better image-text alignment, especially when using very large guidance weights." https://arxiv.org/abs/2205.11487 """ dtype = sample.dtype batch_size, channels, *remaining_dims = sample.shape if dtype not in (torch.float32, torch.float64): sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half # Flatten sample for doing quantile calculation along each image sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) abs_sample = sample.abs() # "a certain percentile absolute pixel value" s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) s = torch.clamp( s, min=1, max=self.config.sample_max_value ) # When clamped to min=1, equivalent to standard clipping to [-1, 1] s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0 sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s" sample = sample.reshape(batch_size, channels, *remaining_dims) sample = sample.to(dtype) return sample # Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler._sigma_to_t def _sigma_to_t(self, sigma): return sigma * self.config.num_train_timesteps def _sigma_to_alpha_sigma_t(self, sigma): return 1 - sigma, sigma # Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.set_timesteps def time_shift(self, mu: float, sigma: float, t: torch.Tensor): return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) def convert_model_output( self, model_output: torch.Tensor, *args, sample: torch.Tensor = None, **kwargs, ) -> torch.Tensor: r""" Convert the model output to the corresponding type the UniPC algorithm needs. Args: model_output (`torch.Tensor`): The direct output from the learned diffusion model. timestep (`int`): The current discrete timestep in the diffusion chain. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. Returns: `torch.Tensor`: The converted model output. """ timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None) if sample is None: if len(args) > 1: sample = args[1] else: raise ValueError("missing `sample` as a required keyward argument") if timestep is not None: deprecate( "timesteps", "1.0.0", "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", ) sigma = self.sigmas[self.step_index] alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) if self.predict_x0: if self.config.prediction_type == "flow_prediction": sigma_t = self.sigmas[self.step_index] x0_pred = sample - sigma_t * model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`," " `v_prediction` or `flow_prediction` for the UniPCMultistepScheduler." ) if self.config.thresholding: x0_pred = self._threshold_sample(x0_pred) return x0_pred else: if self.config.prediction_type == "flow_prediction": sigma_t = self.sigmas[self.step_index] epsilon = sample - (1 - sigma_t) * model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`," " `v_prediction` or `flow_prediction` for the UniPCMultistepScheduler." ) if self.config.thresholding: sigma_t = self.sigmas[self.step_index] x0_pred = sample - sigma_t * model_output x0_pred = self._threshold_sample(x0_pred) epsilon = model_output + x0_pred return epsilon def multistep_uni_p_bh_update( self, model_output: torch.Tensor, *args, sample: torch.Tensor = None, order: int = None, # pyright: ignore **kwargs, ) -> torch.Tensor: """ One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified. Args: model_output (`torch.Tensor`): The direct output from the learned diffusion model at the current timestep. prev_timestep (`int`): The previous discrete timestep in the diffusion chain. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. order (`int`): The order of UniP at this timestep (corresponds to the *p* in UniPC-p). Returns: `torch.Tensor`: The sample tensor at the previous timestep. """ prev_timestep = args[0] if len(args) > 0 else kwargs.pop("prev_timestep", None) if sample is None: if len(args) > 1: sample = args[1] else: raise ValueError(" missing `sample` as a required keyward argument") if order is None: if len(args) > 2: order = args[2] else: raise ValueError(" missing `order` as a required keyward argument") if prev_timestep is not None: deprecate( "prev_timestep", "1.0.0", "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", ) model_output_list = self.model_outputs s0 = self.timestep_list[-1] m0 = model_output_list[-1] x = sample if self.solver_p: x_t = self.solver_p.step(model_output, s0, x).prev_sample return x_t sigma_t, sigma_s0 = self.sigmas[self.step_index + 1], self.sigmas[self.step_index] # pyright: ignore alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) lambda_t = torch.log(alpha_t) - torch.log(sigma_t) lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) h = lambda_t - lambda_s0 device = sample.device rks = [] D1s = [] for i in range(1, order): si = self.step_index - i # pyright: ignore mi = model_output_list[-(i + 1)] alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si]) lambda_si = torch.log(alpha_si) - torch.log(sigma_si) rk = (lambda_si - lambda_s0) / h rks.append(rk) D1s.append((mi - m0) / rk) # pyright: ignore rks.append(1.0) rks = torch.tensor(rks, device=device) R = [] b = [] hh = -h if self.predict_x0 else h h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1 h_phi_k = h_phi_1 / hh - 1 factorial_i = 1 if self.config.solver_type == "bh1": B_h = hh elif self.config.solver_type == "bh2": B_h = torch.expm1(hh) else: raise NotImplementedError() for i in range(1, order + 1): R.append(torch.pow(rks, i - 1)) b.append(h_phi_k * factorial_i / B_h) factorial_i *= i + 1 h_phi_k = h_phi_k / hh - 1 / factorial_i R = torch.stack(R) b = torch.tensor(b, device=device) if len(D1s) > 0: D1s = torch.stack(D1s, dim=1) # (B, K) # for order 2, we use a simplified version if order == 2: rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device) else: rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]).to(device).to(x.dtype) else: D1s = None if self.predict_x0: x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0 if D1s is not None: pred_res = torch.einsum("k,bkc...->bc...", rhos_p, D1s) # pyright: ignore else: pred_res = 0 x_t = x_t_ - alpha_t * B_h * pred_res else: x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0 if D1s is not None: pred_res = torch.einsum("k,bkc...->bc...", rhos_p, D1s) # pyright: ignore else: pred_res = 0 x_t = x_t_ - sigma_t * B_h * pred_res x_t = x_t.to(x.dtype) return x_t def multistep_uni_c_bh_update( self, this_model_output: torch.Tensor, *args, last_sample: torch.Tensor = None, this_sample: torch.Tensor = None, order: int = None, # pyright: ignore **kwargs, ) -> torch.Tensor: """ One step for the UniC (B(h) version). Args: this_model_output (`torch.Tensor`): The model outputs at `x_t`. this_timestep (`int`): The current timestep `t`. last_sample (`torch.Tensor`): The generated sample before the last predictor `x_{t-1}`. this_sample (`torch.Tensor`): The generated sample after the last predictor `x_{t}`. order (`int`): The `p` of UniC-p at this step. The effective order of accuracy should be `order + 1`. Returns: `torch.Tensor`: The corrected sample tensor at the current timestep. """ this_timestep = args[0] if len(args) > 0 else kwargs.pop("this_timestep", None) if last_sample is None: if len(args) > 1: last_sample = args[1] else: raise ValueError(" missing`last_sample` as a required keyward argument") if this_sample is None: if len(args) > 2: this_sample = args[2] else: raise ValueError(" missing`this_sample` as a required keyward argument") if order is None: if len(args) > 3: order = args[3] else: raise ValueError(" missing`order` as a required keyward argument") if this_timestep is not None: deprecate( "this_timestep", "1.0.0", "Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", ) model_output_list = self.model_outputs m0 = model_output_list[-1] x = last_sample x_t = this_sample model_t = this_model_output sigma_t, sigma_s0 = self.sigmas[self.step_index], self.sigmas[self.step_index - 1] # pyright: ignore alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) lambda_t = torch.log(alpha_t) - torch.log(sigma_t) lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) h = lambda_t - lambda_s0 device = this_sample.device rks = [] D1s = [] for i in range(1, order): si = self.step_index - (i + 1) # pyright: ignore mi = model_output_list[-(i + 1)] alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si]) lambda_si = torch.log(alpha_si) - torch.log(sigma_si) rk = (lambda_si - lambda_s0) / h rks.append(rk) D1s.append((mi - m0) / rk) # pyright: ignore rks.append(1.0) rks = torch.tensor(rks, device=device) R = [] b = [] hh = -h if self.predict_x0 else h h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1 h_phi_k = h_phi_1 / hh - 1 factorial_i = 1 if self.config.solver_type == "bh1": B_h = hh elif self.config.solver_type == "bh2": B_h = torch.expm1(hh) else: raise NotImplementedError() for i in range(1, order + 1): R.append(torch.pow(rks, i - 1)) b.append(h_phi_k * factorial_i / B_h) factorial_i *= i + 1 h_phi_k = h_phi_k / hh - 1 / factorial_i R = torch.stack(R) b = torch.tensor(b, device=device) if len(D1s) > 0: D1s = torch.stack(D1s, dim=1) else: D1s = None # for order 1, we use a simplified version if order == 1: rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device) else: rhos_c = torch.linalg.solve(R, b).to(device).to(x.dtype) if self.predict_x0: x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0 if D1s is not None: corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s) else: corr_res = 0 D1_t = model_t - m0 x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t) else: x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0 if D1s is not None: corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s) else: corr_res = 0 D1_t = model_t - m0 x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t) x_t = x_t.to(x.dtype) return x_t def index_for_timestep(self, timestep, schedule_timesteps=None): if schedule_timesteps is None: schedule_timesteps = self.timesteps indices = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) pos = 1 if len(indices) > 1 else 0 return indices[pos].item() # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index def _init_step_index(self, timestep): """ Initialize the step_index counter for the scheduler. """ if self.begin_index is None: if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) self._step_index = self.index_for_timestep(timestep) else: self._step_index = self._begin_index def step( self, model_output: torch.Tensor, timestep: Union[int, torch.Tensor], sample: torch.Tensor, return_dict: bool = True, generator=None, ) -> Union[SchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with the multistep UniPC. Args: model_output (`torch.Tensor`): The direct output from learned diffusion model. timestep (`int`): The current discrete timestep in the diffusion chain. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. return_dict (`bool`): Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`. Returns: [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) if self.step_index is None: self._init_step_index(timestep) use_corrector = ( self.step_index > 0 and self.step_index - 1 not in self.disable_corrector and self.last_sample is not None # pyright: ignore ) model_output_convert = self.convert_model_output(model_output, sample=sample) if use_corrector: sample = self.multistep_uni_c_bh_update( this_model_output=model_output_convert, last_sample=self.last_sample, this_sample=sample, order=self.this_order, ) for i in range(self.config.solver_order - 1): self.model_outputs[i] = self.model_outputs[i + 1] self.timestep_list[i] = self.timestep_list[i + 1] self.model_outputs[-1] = model_output_convert self.timestep_list[-1] = timestep # pyright: ignore if self.config.lower_order_final: this_order = min(self.config.solver_order, len(self.timesteps) - self.step_index) # pyright: ignore else: this_order = self.config.solver_order self.this_order = min(this_order, self.lower_order_nums + 1) # warmup for multistep assert self.this_order > 0 self.last_sample = sample prev_sample = self.multistep_uni_p_bh_update( model_output=model_output, # pass the original non-converted model output, in case solver-p is used sample=sample, order=self.this_order, ) if self.lower_order_nums < self.config.solver_order: self.lower_order_nums += 1 # upon completion increase step index by one self._step_index += 1 # pyright: ignore if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=prev_sample) def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.Tensor`): The input sample. Returns: `torch.Tensor`: A scaled input sample. """ return sample # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise def add_noise( self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor, ) -> torch.Tensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): # mps does not support float64 schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) timesteps = timesteps.to(original_samples.device, dtype=torch.float32) else: schedule_timesteps = self.timesteps.to(original_samples.device) timesteps = timesteps.to(original_samples.device) # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index if self.begin_index is None: step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] elif self.step_index is not None: # add_noise is called after first denoising step (for inpainting) step_indices = [self.step_index] * timesteps.shape[0] else: # add noise is called before first denoising step to create initial latent(img2img) step_indices = [self.begin_index] * timesteps.shape[0] sigma = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): sigma = sigma.unsqueeze(-1) alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) noisy_samples = alpha_t * original_samples + sigma_t * noise return noisy_samples def __len__(self): return self.config.num_train_timesteps