File size: 42,721 Bytes
d0490ec
6efe12c
b86e7fd
d0490ec
575233a
e93cb13
e946b39
4697ce0
ae4a304
b86e7fd
 
eae276f
a12a1d9
 
6efe12c
d0490ec
 
 
6efe12c
d0490ec
d62ee7c
 
ae4a304
 
6efe12c
d0490ec
6efe12c
d0490ec
0b83ba2
d0490ec
a12a1d9
 
 
 
 
d0490ec
 
8e91397
d0490ec
 
a12a1d9
d0490ec
 
a12a1d9
 
 
 
 
8e91397
a12a1d9
 
8e91397
 
 
 
 
 
 
 
 
 
a12a1d9
 
8e91397
 
 
 
 
 
 
 
 
a12a1d9
8e91397
d0490ec
8e91397
 
0b83ba2
d0490ec
 
 
6efe12c
 
d0490ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a12a1d9
eae276f
a12a1d9
eae276f
a12a1d9
 
 
 
 
 
 
 
d0490ec
a12a1d9
d0490ec
a12a1d9
 
 
 
 
d0490ec
a12a1d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0490ec
 
da2d730
 
 
 
 
 
 
 
a12a1d9
da2d730
 
 
 
 
 
 
 
 
b86e7fd
 
 
 
 
 
 
 
 
 
 
 
da2d730
b86e7fd
da2d730
 
b86e7fd
 
 
da2d730
 
 
b86e7fd
 
 
 
 
 
 
 
da2d730
 
b86e7fd
 
 
 
 
 
 
 
 
 
 
 
4697ce0
 
a12a1d9
4697ce0
a12a1d9
4697ce0
 
 
 
 
a12a1d9
4697ce0
 
 
 
 
eae276f
a12a1d9
4697ce0
 
da2d730
c803551
 
a12a1d9
c803551
 
 
 
 
 
 
 
 
a12a1d9
c803551
 
 
 
 
 
 
 
a12a1d9
c803551
 
 
 
 
 
 
 
 
 
4cad7a4
c803551
 
 
 
 
 
 
 
 
 
8e63348
 
 
eae276f
8e63348
b86e7fd
 
 
 
 
 
 
 
 
 
 
 
8e63348
872fb01
b86e7fd
872fb01
b86e7fd
0b83ba2
b86e7fd
872fb01
b86e7fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eae276f
8e63348
 
b86e7fd
8e63348
b86e7fd
 
 
 
 
 
 
 
 
8e63348
 
 
 
 
 
 
a12a1d9
8e63348
 
 
 
 
 
 
 
 
 
 
 
b86e7fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e63348
 
 
 
 
 
 
 
 
 
 
b86e7fd
8e63348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eae276f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e63348
 
eae276f
 
 
 
 
b86e7fd
eae276f
b86e7fd
 
eae276f
b86e7fd
 
 
 
 
 
 
c803551
8e63348
eae276f
 
 
 
a12a1d9
eae276f
 
 
 
 
 
 
 
 
 
 
a12a1d9
eae276f
 
 
 
 
 
 
 
 
 
 
a12a1d9
eae276f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b86e7fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eae276f
 
a12a1d9
eae276f
a12a1d9
eae276f
 
 
 
 
 
a12a1d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eae276f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a12a1d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2af4dae
2cb6927
 
 
 
 
 
 
 
 
 
2af4dae
a12a1d9
d0490ec
 
 
f3b56d3
 
932aa92
a12a1d9
 
b86e7fd
0b83ba2
a12a1d9
 
 
 
 
b86e7fd
a12a1d9
 
 
 
 
b86e7fd
 
a12a1d9
324000b
0b83ba2
b86e7fd
 
 
f3b56d3
d0490ec
 
 
 
75c9b07
d0490ec
 
75c9b07
d0490ec
b86e7fd
2af4dae
 
 
 
 
 
a12a1d9
7db1ce5
b57c693
2af4dae
 
a12a1d9
 
51b4921
b86e7fd
2af4dae
a12a1d9
 
0b83ba2
91279e0
 
b57c693
91279e0
2af4dae
b57c693
0b83ba2
b86e7fd
75c9b07
b86e7fd
0b83ba2
 
92c77a0
 
 
 
 
 
 
 
 
0b83ba2
d0490ec
75c9b07
 
4697ce0
75c9b07
d0490ec
75c9b07
d0490ec
75c9b07
d0490ec
75c9b07
d0490ec
75c9b07
d0490ec
75c9b07
 
4697ce0
75c9b07
 
d0490ec
75c9b07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0490ec
 
 
ae4a304
e93cb13
47d092c
4697ce0
d0490ec
2948a14
ead2a02
6efe12c
e946b39
da2d730
44e8e4f
ae4a304
bb4d19c
da2d730
f80a1f8
0a04e0d
da2d730
ae4a304
44e8e4f
e946b39
 
556e783
 
44e8e4f
ae4a304
c0b248d
51cc59e
8e63348
 
7db1ce5
c0b248d
e946b39
d0490ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a12a1d9
d0490ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae4a304
 
2af4dae
 
d766d61
 
f7728a8
c0b248d
 
f7728a8
c0b248d
d766d61
2af4dae
d766d61
d0490ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a12a1d9
d0490ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
095cb52
 
 
d0490ec
 
 
 
 
 
 
 
 
 
 
6efe12c
 
d0490ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
095cb52
 
02bdc0b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
import os
import gradio as gr
import requests, tempfile, base64, json, datetime, re, subprocess, mimetypes, fitz
import pandas as pd
from langchain.tools import tool
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
from langchain.agents import initialize_agent, AgentType
from bs4 import BeautifulSoup
from langchain_openai import ChatOpenAI
from langchain_community.utilities import ArxivAPIWrapper
from youtube_transcript_api import YouTubeTranscriptApi
import yt_dlp
from PIL import Image
from transformers import pipeline

## # Load environment variables from .env file
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# Load the environment variables
HF_ACCESS_KEY = os.getenv('HF_ACCESS_KEY')
WEATHER_API_KEY = os.getenv('WEATHER_API_KEY')
OPENAI_KEY = os.getenv('OPENAI_KEY')
OPENAI_MODEL = os.getenv ('OPENAI_MODEL')

########## ----- DEFINING TOOLS -----##########

# --- TOOL 1: Web Search Tool (DuckDuckGo) ---

@tool
def current_events_news_search_tool(query: str) -> str:
    """
    General web search tool for current events, news, or trending topics not yet on Wikipedia.
    Returns relevant context and source URL if available.
    """
    url = f"https://api.duckduckgo.com/?q={query}&format=json&no_html=1"
    try:
        resp = requests.get(url, timeout=30)
        resp.raise_for_status()
        data = resp.json()
        # Check main answer fields
        for key in ["AbstractText", "Answer", "Definition"]:
            if data.get(key):
                answer = data[key].strip()
                break
        else:
            answer = None

        # Try to extract more from RelatedTopics
        if not answer:
            related = data.get("RelatedTopics")
            if related and isinstance(related, list):
                for topic in related:
                    if isinstance(topic, dict) and topic.get("Text"):
                        answer = topic["Text"].strip()
                        # Optionally, add the URL
                        if topic.get("FirstURL"):
                            answer += f"\nSource: {topic['FirstURL']}"
                        break

        # Try to extract from Results
        if not answer:
            results = data.get("Results")
            if results and isinstance(results, list):
                for result in results:
                    if isinstance(result, dict) and result.get("Text"):
                        answer = result["Text"].strip()
                        if result.get("FirstURL"):
                            answer += f"\nSource: {result['FirstURL']}"
                        break

        # Fallback: return "no_answer"
        if answer:
            return answer
        return "no_answer"
    except Exception as e:
        return f"error: {e}"

# when you use the @tool decorator from langchain.tools, the tool.name and tool.description are automatically extracted from your function
# tool.name is set to the function name (e.g., `search_tool`), and 
# tool.description is set to the docstring of the function  (the triple-quoted string right under def ...) (e.g., "Answer general knowledge or current events queries using DuckDuckGo.").


# --- TOOL 3: Calculator Tool ---
@tool
def calculator(expression: str) -> str:
    """Evaluate math expressions."""
    try:
        allowed = "0123456789+-*/(). "
        if not all(c in allowed for c in expression):
            return "error"
        result = eval(expression, {"__builtins__": None}, {})
        return str(result)
    except Exception:
        return "error"
    
# --- TOOL 6: Wikipedia Summary Tool ---
@tool
def wikipedia_and_generalknowledge_search(query: str) -> str:
    """
    Answer questions related to general knowledge, world information, facts, sports, olympics, history, etc. from Wikipedia by scraping the text and returns text as context for LLM to use.
    """
    # Step 1: Search Wikipedia for the most relevant page
    search_url = "https://en.wikipedia.org/w/api.php"
    params = {
        "action": "query",
        "list": "search",
        "srsearch": query,
        "format": "json"
    }
    try:
        resp = requests.get(search_url, params=params, timeout=150)
        resp.raise_for_status()
        results = resp.json().get("query", {}).get("search", [])
        if not results:
            return "no_answer"
        page_title = results[0]["title"]
        page_url = f"https://en.wikipedia.org/wiki/{page_title.replace(' ', '_')}"
    except Exception:
        return "error: Could not search Wikipedia"

    # Step 2: Fetch the Wikipedia page and extract main text
    try:
        page_resp = requests.get(page_url, timeout=120)
        page_resp.raise_for_status()
        soup = BeautifulSoup(page_resp.text, "html.parser")
        output = f"Source: {page_url}\n"

        # Extract main text from all paragraphs
        paragraphs = soup.find_all("p")
        text = " ".join(p.get_text(separator=" ", strip=True) for p in paragraphs)
        # Limit to first 3000 characters for brevity
        output += text[:3000] if text else "No textual content found."
        return output
    except Exception as e:
        return f"error: {e}"


# --- TOOL 9: Image Captioning Tool ---
@tool
def image_caption(image_url: str) -> str:
    """Generate a descriptive caption for an image given its URL."""
    api_url = "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-base"
    headers = {"Authorization": f"Bearer {HF_ACCESS_KEY}"}
    payload = {"inputs": image_url}
    try:
        resp = requests.post(api_url, headers=headers, json=payload, timeout=120)
        resp.raise_for_status()
        data = resp.json()
        return data[0]["generated_text"] if isinstance(data, list) else data.get("generated_text", "no_caption")
    except Exception:
        return "error"
    
# --- TOOL 10: Optical Character Recognition (OCR) Tool ---
@tool
def ocr_image(image_url: str) -> str:
    """
    Extracts all readable text from an image using HuggingFace TrOCR (microsoft/trocr-base-stage1).
    Input: URL to an image (e.g., PNG or JPG).
    Output: Recognized text string.
    """
    api_url = "https://api-inference.huggingface.co/models/microsoft/trocr-base-stage1"
    headers = {
        "Authorization": f"Bearer {HF_ACCESS_KEY}",
        "Content-Type": "application/json"
    }
    payload = {"inputs": image_url}

    try:
        resp = requests.post(api_url, headers=headers, json=payload, timeout=60)
        resp.raise_for_status()
        data = resp.json()
        return data[0]["generated_text"]
    except Exception as e:
        return f"OCR error: {e}"
    
# --- TOOL 11: Image Classification Tool ---
@tool
def clasify_describe_image(image_url: str) -> str:
    """
    Generates a caption describing the contents of an image using HuggingFace (ViT-GPT2). 
    Use this tool to identify the main subject of an image so that an LLM can use it to answer further.
    Input: image URL
    Output: caption like 'A golden retriever lying on a couch.'
    """
    api_url = "https://api-inference.huggingface.co/models/nlpconnect/vit-gpt2-image-captioning"
    headers = {"Authorization": f"Bearer {HF_ACCESS_KEY}"}

    try:
        img_resp = requests.get(image_url, timeout=120)
        img_resp.raise_for_status()
        image_bytes = img_resp.content

        response = requests.post(api_url, headers=headers, data=image_bytes, timeout=60)
        response.raise_for_status()
        result = response.json()
        return result[0]["generated_text"] if isinstance(result, list) else "no_caption"
    except Exception as e:
        return f"caption error: {e}"
    
# --- TOOL 12: Web Scraping Tool ---
@tool
def URL_scrape_tool(url: str) -> str:
    """
    Scrape the main textual content from a given website URL and returns the text - to be used as context by model.
    """
    try:
        headers = {
            "User-Agent": "Mozilla/5.0 (compatible; WebScrapeTool/1.0)"
        }
        resp = requests.get(url, headers=headers, timeout=120)
        resp.raise_for_status()
        soup = BeautifulSoup(resp.text, "html.parser")
        # Try to extract main content from common tags
        paragraphs = soup.find_all("p")
        text = " ".join(p.get_text() for p in paragraphs)
        # Limit to first 2000 characters for brevity
        return text[:4000] if text else "No textual content found."
    except Exception as e:
        return f"error: {e}"

# --- TOOL 13: Audio to Text Transcription Tool ---
@tool
def audio_url_to_text(audio_url: str) -> str:
    """
    Transcribe speech from an audio file URL to text using Hugging Face's Whisper model.
    Input: A direct link to an audio file (e.g., .mp3, .wav).
    Output: The transcribed text.
    """
    api_url = "https://api-inference.huggingface.co/models/openai/whisper-large-v3"
    headers = {"Authorization": f"Bearer {HF_ACCESS_KEY}"}
    try:
        # Download the audio file
        audio_resp = requests.get(audio_url, timeout=120)
        audio_resp.raise_for_status()
        audio_bytes = audio_resp.content
        # Encode audio as base64 for API
        audio_b64 = base64.b64encode(audio_bytes).decode("utf-8")
        payload = {
            "inputs": audio_b64,
            "parameters": {"return_timestamps": False}
        }
        resp = requests.post(api_url, headers=headers, json=payload, timeout=120)
        resp.raise_for_status()
        data = resp.json()
        return data.get("text", "no_answer")
    except Exception as e:
        return f"error: {e}"

# --- TOOL 14: Python Code Executor Tool ---
@tool
def python_executor(code: str) -> str:
    """
    Safely execute simple Python code and return the result if the code is in the question. If the question has .py file attached, use 'python_excel_audio_video_attached_file_tool' tool first.
    Only supports expressions and basic statements (no imports, file I/O, or system access).
    """
    try:
        # Restrict built-ins for safety
        allowed_builtins = {"abs": abs, "min": min, "max": max, "sum": sum, "len": len, "range": range}
        # Only allow expressions, not statements
        result = eval(code, {"__builtins__": allowed_builtins}, {})
        return str(result)
    except Exception as e:
        return f"error: {e}"

# --- TOOL 15: Attachment Processing Tool ---
@tool
def python_excel_audio_video_attached_file_tool(input_str: str) -> str:
    """
    Accepts a JSON string with one of:
        • 'file_bytes'  : base-64–encoded bytes  (existing behaviour)
        • 'file_path'   : local absolute/relative path to a file
        • 'file_url'    : downloadable URL (e.g. Hugging Face dataset link)

    Keys (at least one bytes / path / url required):
        • filename  (str) – original name with extension
        • file_bytes (str, base-64)    – optional
        • file_path  (str)             – optional
        • file_url   (str)             – optional

    Returns: textual summary / preview ready for the LLM.
    """

    # ---------- 1. Parse JSON ------------------------------------------------
    try:
        # Robustly pull out the first {...} block even if extra tokens are around it
        match = re.search(r'(\{.*\})', input_str, re.DOTALL)
        payload = json.loads(match.group(1) if match else input_str)
    except Exception as e:
        return f"error: Could not parse JSON → {e}"

    filename  = payload.get("filename")
    b64_data  = payload.get("file_bytes")
    file_path = payload.get("file_path")
    file_url  = payload.get("file_url")

    if not filename:
        return "error: 'filename' is required."

    # ---------- 2. Acquire raw bytes ----------------------------------------
    try:
        if b64_data:                                        # inline bytes
            file_bytes = base64.b64decode(b64_data)

        elif file_path and os.path.exists(file_path):       # local path
            with open(file_path, "rb") as f:
                file_bytes = f.read()

        elif file_url:                                      # remote URL
            # stream to avoid loading huge files into memory at once
            r = requests.get(file_url, timeout=60, stream=True)
            r.raise_for_status()
            file_bytes = r.content

        else:
            return "error: Provide 'file_bytes', 'file_path', or 'file_url'."
    except Exception as e:
        return f"error: Could not load file → {e}"

    # Detect file type
    mime_type, _ = mimetypes.guess_type(filename)
    # fallback for common extensions if guess_type fails
    if not mime_type:
        ext = filename.lower()
        mime_type = (
            "text/x-python"          if ext.endswith(".py")  else
            "text/csv"               if ext.endswith(".csv") else
            "application/vnd.ms-excel" if ext.endswith((".xls", ".xlsx")) else
            None
        )
    if not mime_type:
        return "error: Could not determine file type. Skip the file."

    # Handle audio files
    if mime_type.startswith("audio"):
        api_url = "https://api-inference.huggingface.co/models/openai/whisper-large-v3"
        headers = {"Authorization": f"Bearer {HF_ACCESS_KEY}"}
        files = {"file": (filename, file_bytes)}
        try:
            resp = requests.post(api_url, headers=headers, files=files, timeout=120)
            resp.raise_for_status()
            data = resp.json()
            transcript = data.get("text", "")
            if transcript:
                return f"Transcript of the audio: {transcript}"
            else:
                return "error: No transcript returned."
        except Exception as e:
            return f"error: {e}"

    # Handle image files
    elif mime_type.startswith("image"):
        # image_b64 = base64.b64encode(file_bytes).decode()
        api_url = "https://api-inference.huggingface.co/models/nlpconnect/vit-gpt2-image-captioning"
        headers = {"Authorization": f"Bearer {os.getenv('HF_ACCESS_KEY', '')}"}
        try:
            resp = requests.post(api_url, headers=headers, data=file_bytes, timeout=60)
            resp.raise_for_status()
            result = resp.json()
            if isinstance(result, list) and result and "generated_text" in result[0]:
                caption = result[0]["generated_text"]
            else:
                caption = "no_caption"

            # Optionally also include base-64 so the LLM can refer to the raw image
            b64 = base64.b64encode(file_bytes).decode()
            return f"Image caption: {caption}\nAttached image (base64): {b64}"
        except Exception as e:
            return f"caption error: {e}"
        return f"Attached image (base64): {image_b64}"

    # Handle video files (extract audio, then transcribe)
    elif mime_type.startswith("video"):
        try:
            with tempfile.NamedTemporaryFile(delete=False, suffix=filename.split('.')[-1]) as tmp_video:
                tmp_video.write(file_bytes)
                tmp_video.flush()
                video_path = tmp_video.name

            audio_path = video_path + ".wav"
            # import subprocess
            subprocess.run([
                "ffmpeg", "-i", video_path, "-vn", "-acodec", "pcm_s16le", "-ar", "16000", "-ac", "1", audio_path
            ], check=True)

            with open(audio_path, "rb") as f:
                audio_bytes = f.read()

            api_url = "https://api-inference.huggingface.co/models/openai/whisper-large-v3"
            headers = {"Authorization": f"Bearer {HF_ACCESS_KEY}"}
            files = {"file": ("audio.wav", audio_bytes)}
            resp = requests.post(api_url, headers=headers, files=files, timeout=120)
            resp.raise_for_status()
            data = resp.json()
            transcript = data.get("text", "")
            if transcript:
                return f"Transcript of the video audio: {transcript}"
            else:
                return "error: No transcript returned from video audio."
        except Exception as e:
            return f"error: {e}"

    # Handle Excel files (.xls, .xlsx, .csv)
    elif mime_type in ["application/vnd.ms-excel", "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", "text/csv"]:
        try:
            with tempfile.NamedTemporaryFile(delete=False, suffix=filename.split('.')[-1]) as tmp_excel:
                tmp_excel.write(file_bytes)
                tmp_excel.flush()
                excel_path = tmp_excel.name

            if filename.lower().endswith(".csv"):
                df = pd.read_csv(excel_path)
                preview = df.head(500).to_csv(index=False)
                return f"CSV file preview (first 5 rows):\n{preview}"
            else:
                xl = pd.ExcelFile(excel_path)
                sheet_names = xl.sheet_names
                preview = ""
                for sheet in sheet_names:
                    df = xl.parse(sheet)
                    preview += f"\nSheet: {sheet}\n{df.head(500).to_csv(index=False)}"
                return f"Excel file sheets: {sheet_names}\nPreview (first 3 rows per sheet):{preview}"
        except Exception as e:
            return f"error: {e}"

    # Handle Python files (.py)
    elif mime_type == "text/x-python" or filename.lower().endswith(".py"):
        try:
            code = file_bytes.decode("utf-8", errors="replace")
            lines = code.splitlines()
            preview = "\n".join(lines[:40])
            return f"Python file preview (first 40 lines):\n{preview}"
        except Exception as e:
            return f"error: {e}"

    else:
        return "error: Unsupported file type. Please skip the file usage."

    

# --- TOOL 16: Research Paper Info Extraction Tool ---
@tool
def research_paper_search(query: str) -> str:
    """
    Search arXiv for journals/research/technical papers matching a query. 
    Returns top results including title, authors, abstract, and PDF link.
    """
    wrapper = ArxivAPIWrapper(
        top_k_results=2,                  # how many papers to return
        doc_content_chars_max=2000        # max chars of abstract to show
    )
    
    results_text = wrapper.run(query)
    return results_text
    

# --- TOOL 17:Tool for sports, awards, competitions etc. ---
@tool
def sports_awards_historicalfacts_tool(query: str) -> str:
    """
    For questions about sports, awards, competitions, historical facts, or generic wikipedia available data, this tool fetches relevant context from Wikipedia.
    """

    # Step 1: Search Wikipedia for the most relevant page
    search_url = "https://en.wikipedia.org/w/api.php"
    params = {
        "action": "query",
        "list": "search",
        "srsearch": query,
        "format": "json"
    }
    try:
        resp = requests.get(search_url, params=params, timeout=150)
        resp.raise_for_status()
        results = resp.json().get("query", {}).get("search", [])
        if not results:
            return "no_answer"
        page_title = results[0]["title"]
        page_url = f"https://en.wikipedia.org/wiki/{page_title.replace(' ', '_')}"
    except Exception:
        return "error: Could not search Wikipedia"

    # Step 2: Fetch the Wikipedia page and extract tables and lists
    try:
        page_resp = requests.get(page_url, timeout=150)
        page_resp.raise_for_status()
        soup = BeautifulSoup(page_resp.text, "html.parser")
        output = f"Source: {page_url}\n"

        # Extract all tables with relevant columns
        tables = soup.find_all("table", {"class": ["wikitable", "sortable"]})
        found_table = False
        for table in tables:
            table_str = str(table)
            if any(word in table_str.lower() for word in ["winner", "name", "year", "nationality", "country"]):
                try:
                    df = pd.read_html(table_str)[0]
                    output += "\n--- Extracted Table ---\n"
                    output += df.to_csv(index=False)
                    found_table = True
                except Exception:
                    continue

        # If no relevant table, extract lists (e.g., <ul> or <ol> with <li>)
        if not found_table:
            lists = soup.find_all(['ul', 'ol'])
            for lst in lists:
                items = lst.find_all('li')
                if len(items) > 2:  # Only consider lists with more than 2 items
                    output += "\n--- Extracted List ---\n"
                    for item in items:
                        text = item.get_text(separator=" ", strip=True)
                        output += f"{text}\n"
                    break  # Only include the first relevant list

        # Fallback: return the first paragraph if nothing else
        if not found_table and "--- Extracted List ---" not in output:
            first_p = soup.find("p")
            output += first_p.get_text(strip=True)[:500] if first_p else "no_answer"

        # Limit output length for LLM context
        return output[:3500]
    except Exception as e:
        return f"error: {e}"

# --- TOOL 17: YouTube Transcript Tool ---
@tool
def youtube_transcript_tool(video_url: str) -> str:
    """
    Get transcript (if available) for a YouTube video without downloading audio.
    Works only if subtitles or auto-captions exist.
    """
    try:
        # Extract video ID
        match = re.search(r"(?:v=|youtu\.be/)([a-zA-Z0-9_-]{11})", video_url)
        if not match:
            return "Invalid YouTube URL."
        video_id = match.group(1)

        transcript = YouTubeTranscriptApi.get_transcript(video_id)
        full_text = " ".join([chunk['text'] for chunk in transcript])
        return full_text[:5000]  # truncate to keep LLM input manageable
    except Exception as e:
        return f"Transcript error: {e}"
    

# --- TOOL 18: YouTube Transcript Tool ---
@tool
def video_url_to_transcript_tool(media_url: str) -> str:
    """
    Given a URL to a video or audio file (YouTube, direct .mp4/.mp3/.wav, etc.), download the audio and return a transcript.
    """
    api_url = "https://api-inference.huggingface.co/models/openai/whisper-large-v3"
    headers = {"Authorization": f"Bearer {HF_ACCESS_KEY}"}

    try:
        with tempfile.TemporaryDirectory() as tmpdir:
            audio_path = None

            # Check if it's a YouTube URL
            if "youtube.com" in media_url or "youtu.be" in media_url:
                ydl_opts = {
                    'format': 'bestaudio/best',
                    'outtmpl': f'{tmpdir}/audio.%(ext)s',
                    'quiet': True,
                    'noplaylist': True,
                    'extractaudio': True,
                    'audioformat': 'wav',
                    'postprocessors': [{
                        'key': 'FFmpegExtractAudio',
                        'preferredcodec': 'wav',
                        'preferredquality': '192',
                    }],
                }
                with yt_dlp.YoutubeDL(ydl_opts) as ydl:
                    info = ydl.extract_info(media_url, download=True)
                    audio_path = ydl.prepare_filename(info).rsplit('.', 1)[0] + '.wav'
            else:
                # Download direct media file
                resp = requests.get(media_url, timeout=120)
                resp.raise_for_status()
                # Guess extension
                ext = media_url.split('?')[0].split('.')[-1].lower()
                if ext not in ["mp3", "wav", "m4a", "mp4"]:
                    ext = "mp3"
                file_path = os.path.join(tmpdir, f"audio.{ext}")
                with open(file_path, "wb") as f:
                    f.write(resp.content)
                # If video, extract audio using ffmpeg
                if ext in ["mp4", "mkv", "webm"]:
                    audio_path = os.path.join(tmpdir, "audio.wav")
                    import subprocess
                    subprocess.run([
                        "ffmpeg", "-i", file_path, "-vn", "-acodec", "pcm_s16le", "-ar", "16000", "-ac", "1", audio_path
                    ], check=True)
                else:
                    audio_path = file_path

            # Read audio bytes
            with open(audio_path, "rb") as f:
                audio_bytes = f.read()

        # Encode audio as base64 for API
        audio_b64 = base64.b64encode(audio_bytes).decode("utf-8")
        payload = {
            "inputs": audio_b64,
            "parameters": {"return_timestamps": False}
        }
        resp = requests.post(api_url, headers=headers, json=payload, timeout=120)
        resp.raise_for_status()
        data = resp.json()
        return data.get("text", "no_answer")
    except Exception as e:
        return f"error: {e}"
    

# --- TOOL 19: Audio to Text Transcription Tool ---
@tool
def max_object_in_video(video_url: str, object_label: str = "bird") -> str:
    """
    Given a video URL and an object label, extracts frames and uses an object detection model to count the specified object in each frame.
    Returns the maximum number of objects detected in any single frame.
    Example: max_object_in_video("https://...", "car") -> "Maximum car count in a frame: 4"
    """

    # Download video
    try:
        resp = requests.get(video_url, timeout=120)
        resp.raise_for_status()
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_video:
            tmp_video.write(resp.content)
            tmp_video.flush()
            video_path = tmp_video.name
    except Exception as e:
        return f"error: Could not download video: {e}"

    # Extract frames every 2 seconds (adjust as needed)
    frames_dir = tempfile.mkdtemp()
    frame_pattern = os.path.join(frames_dir, "frame_%04d.jpg")
    try:
        subprocess.run([
            "ffmpeg", "-i", video_path, "-vf", "fps=0.5", frame_pattern
        ], check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
    except Exception as e:
        return f"error: Could not extract frames: {e}"

    # Load object detection pipeline
    try:
        detector = pipeline("object-detection", model="facebook/detr-resnet-50")
    except Exception as e:
        return f"error: Could not load detection model: {e}"

    max_count = 0
    for fname in sorted(os.listdir(frames_dir)):
        fpath = os.path.join(frames_dir, fname)
        try:
            image = Image.open(fpath)
            results = detector(image)
            count = sum(1 for obj in results if obj['label'].lower() == object_label.lower() and obj['score'] > 0.5)
            if count > max_count:
                max_count = count
        except Exception:
            continue

    # Clean up
    try:
        os.remove(video_path)
        for fname in os.listdir(frames_dir):
            os.remove(os.path.join(frames_dir, fname))
        os.rmdir(frames_dir)
    except Exception:
        pass

    return f"Maximum {object_label} count in a single frame: {max_count}"

'''
def extract_final_answer(output: str) -> str:
    # Try to extract answer after [YOUR FINAL ANSWER] or Final Answer:
    match = re.search(r"\[YOUR FINAL ANSWER\]\s*(.+)", output)
    if match:
        return match.group(1).strip()
    match = re.search(r"Final Answer:\s*(.+)", output)
    if match:
        return match.group(1).strip()
    # Fallback: return the whole output if no match
    return output.strip()
'''

##-- Tool Discovery ---
# Use @tool for each function.
# Use get_all_tools() to auto-discover all decorated tools.
# tools_list = get_all_tools()
tools_list = [
    python_excel_audio_video_attached_file_tool,
    wikipedia_and_generalknowledge_search,
    # sports_awards_historicalfacts_tool,
    research_paper_search,
    python_executor,
    # get_weather,
    # calculator,
    # convert_units,
    # get_time,
    # get_date,
    # dictionary_lookup,
    # currency_convert,
    # image_caption,
    # ocr_image,
    # classify_image,
    current_events_news_search_tool,
    ocr_image,
    clasify_describe_image,
    URL_scrape_tool,
    # audio_url_to_text, 
    # sports_awards_historicalfacts_tool,
    youtube_transcript_tool,
    # video_url_to_transcript_tool,
    max_object_in_video,
]

tool_descriptions = "\n".join(f"- {tool.name}: {tool.description}" for tool in tools_list)



## --
# --- System Prompt for the Agent ---

system_prompt = f"""
You are a general AI assistant, who can answer about general knowledge, historical facts, and also can analyze audios, images, and videos. You should think through the input question step-by-step and use tools if needed.

Use this reasoning format repeatedly:
Thought: (what you think is happening or what you want to do next)
Action: (the tool to use, if needed)
Action Input: (input to the tool)
Observation: (result of the tool call)

Repeat this process as needed. ONLY AFTER finishing your reasoning and/or tool use, provide YOUR FINAL ANSWER 
Your output should be just a number, string, or comma-separated list. Don't give your Thoughts, Actions, Observations or any other descriptions.

You also have access to a set of tools, which you can use to answer the question. The available tools are:
{tool_descriptions}

If the question is related to sports, awards, historical facts or similar topic that can be answered from wikipedia, you should use the 'wikipedia_and_generalknowledge_search'. 
If the question is about current events or news or similar current affairs category, you can utilize the tool 'current_events_news_search_tool' to fetch relevant page information and answer from it. 
If the tool returns a long text, table, or list, extract only the most relevant information/paragraphs or data from which you can derive the answer, and return that as your final answer.
You must not use multiple tools in a single call. Don't hallucinate.


**Examples:**
Q: Which country had the least number of athletes at the 1928 Summer Olympics?
Your Output: Luxembourg

Q: What are the top 3 programming languages?
Your Output: Python, JavaScript, Java

If even after 12 iterations, a tool usage is not useful then try to answer directly based on your knowledge without any hallucination. If you cannot answer then just say "no_answer" as YOUR FINAL ANSWER. 
"""

# If your final answer is something like 'there were 5 studio albums published between 2000 and 2009' then modify YOUR FINAL ANSWER as: '5' 
# If your final answer is something like 'b, e' then YOUR FINAL ANSWER be: 'b, e'
# For each question, follow this format:

# Question: the input question you must answer
# Thought: your reasoning about what to do next
# Action: the action to take, must be one of the tools. If no relevant tools, answer the question directly.
# Action Input: the input to the action
# Observation: the result of the action
# ... (repeat Thought/Action/Action Input/Observation as needed)
# Final Answer: the answer to the original question, as concise as possible (number, short string, or comma-separated list, no extra explanation).


# system_prompt = f"""
# You are an intelligent assistant with access to the following tools:

# {tool_descriptions}

# For every question, you must do your internal reasoning using the Thought → Action → Observation → Answer process, but your output to the user should be ONLY the final answer as a single value (number, string, or comma-separated list), with no extra explanation, thoughts, actions, or observations.

# **If a tool returns a long text or description (such as from a web scraping tool), you must carefully read and process that output, and extract or identify ONLY the most relevant, concise answer to the user's question, and provide a single string as output. Do not return the full text or irrelevant details.**

# **Your output must be only the answer. Do not include any reasoning, tool calls, or explanations.**

# Examples:

# Q: What is 7 * (3 + 2)?
# Your Output: 35

# Q: What’s the weather in Tokyo?
# Your Output: 22

# Q: What is the capital of France?
# Your Output: Paris

# Q: Which year was python 3.0 released as per the website https://en.wikipedia.org/wiki/Python_(programming_language)?
# (Tool returns a long description about Python.)
# Your Output: 2008

# Q: Convert 10 meters to feet.
# Your Output: 32.81

# Instructions:
# - Always do your internal reasoning (Thought → Action → Observation → Answer) before producing the answer, but DO NOT show this reasoning to the user.
# - Use a tool only if necessary, and don't use multiple tools in a call. Don't use a tool if you can answer directly.
# - Your output must be a single value (number, string, or comma-separated list) with no extra explanation or formatting.
# - If you cannot answer the question or if you couldn't process the input question just answer as "no_answer".
# - Be concise and accurate.
# """

## --- Initialize Hugging Face Model ---
# Generate the chat interface, including the tools
'''
llm = HuggingFaceEndpoint(
    repo_id="meta-llama/Llama-3.3-70B-Instruct",
    # repo_id="Qwen/Qwen2.5-32B-Instruct",
    huggingfacehub_api_token=HF_ACCESS_KEY,
    # model_kwargs={'prompt': system_prompt}
    # system_prompt=system_prompt,
)
chat_llm = ChatHuggingFace(llm=llm)
'''
# Initialize the OpenAI chat model
chat_llm = ChatOpenAI(
    openai_api_key=OPENAI_KEY,
    model_name=OPENAI_MODEL,
    temperature=0.05,
    # max_tokens=10
)

# Initialize the agent with the tools and system prompt
agent = initialize_agent(
    tools=tools_list,
    # llm=llm,
    llm=chat_llm,
    agent=AgentType.OPENAI_FUNCTIONS,#AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    agent_kwargs={"system_message": system_prompt},
    verbose=True,
    max_iterations=15, # Increase as needed
    max_execution_time=4000, # Increase as needed
    early_stopping_method="generate",
    handle_parsing_errors=True,
    # return_intermediate_steps=False
)


## --
def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    """
    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    """
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=120)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            # full_prompt = f"{system_prompt}\n Input Question: {question_text}"
            # submitted_answer = agent.run(full_prompt)
            # submitted_answer_raw = agent.run(question_text)
            submitted_answer = agent.run(question_text)

            '''
            if "YOUR FINAL ANSWER:" in submitted_answer:
                match = re.search(r"YOUR FINAL ANSWER:\s*(.+)", submitted_answer, re.IGNORECASE | re.DOTALL)
                scraped_answer = match.group(1).strip()
            else:
                scraped_answer = submitted_answer.strip()
            '''
            # submitted_answer = extract_final_answer(submitted_answer_raw)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=120)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()
    # login_btn = gr.LoginButton()
    # login_btn.activate()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")

# Launch the Gradio app
demo.launch(debug=True, share=True) #share=True