import numpy as np import torch import open3d as o3d def look_at(cam_pos, target=(0,0,0), up=(0,0,1)): # Forward vector forward = target - cam_pos forward /= np.linalg.norm(forward) # Default up vector right = np.cross(up, forward) if np.linalg.norm(right) < 1e-6: up = np.array([1, 0, 0]) right = np.cross(up, forward) right /= np.linalg.norm(right) up = np.cross(forward, right) # Build rotation and translation matrices rotation = np.eye(4) rotation[:3, :3] = np.vstack([right, up, -forward]).T translation = np.eye(4) translation[:3, 3] = cam_pos cam_to_world = translation @ rotation cam_to_world[:3,2] = -cam_to_world[:3,2] cam_to_world[:3,1] = -cam_to_world[:3,1] # rotate 90 degrees around z axis return cam_to_world def sample_camera_poses(target: np.ndarray, inner_radius: float, outer_radius: float, n: int,seed: int = 42,mode: str = 'grid') -> np.ndarray: """ Samples `n` camera poses uniformly on a sphere of given `radius` around `target`. The cameras are positioned randomly and oriented to look at `target`. Args: target (np.ndarray): 3D point (x, y, z) that cameras should look at. inner_radius (float): Radius of the sphere. outer_radius (float): Radius of the sphere. n (int): Number of camera poses to sample. Returns: torch.Tensor: (n, 4, 4) array of transformation matrices (camera-to-world). """ cameras = [] np.random.seed(seed) u_1 = np.linspace(0,1,n,endpoint=False) u_2 = np.linspace(0,0.7,n) u_1, u_2 = np.meshgrid(u_1, u_2) u_1 = u_1.flatten() u_2 = u_2.flatten() theta = np.arccos(1-2*u_2) phi = 2*np.pi*u_1 n_poses = len(phi) radii = np.random.uniform(inner_radius, outer_radius, n_poses) cameras = [] r_z = np.array([[0,-1,0],[1,0,0],[0,0,1]]) for i in range(n_poses): # Camera position on the sphere x = target[0] + radii[i] * np.sin(theta[i]) * np.cos(phi[i]) y = target[1] + radii[i] * np.sin(theta[i]) * np.sin(phi[i]) z = target[2] + radii[i] * np.cos(theta[i]) cam_pos = np.array([x, y, z]) cam2world = look_at(cam_pos, target) if theta[i] == 0: cam2world[:3,:3] = cam2world[:3,:3] @ r_z # rotate 90 degrees around z axis for the camera opposite to the input cameras.append(cam2world) cameras = np.unique(cameras, axis=0) return np.stack(cameras) def pointmap_to_poses(pointmaps: torch.Tensor, n_poses: int, inner_radius: float = 1.1, outer_radius: float = 2.5, device: str = 'cuda', bb_mode: str='bb',run_octmae: bool = False) -> np.ndarray: """ Samples `n_poses` camera poses uniformly on a sphere of given `radius` around `target`. The cameras are positioned randomly and oriented to look at `target`. """ bb_min_corner = pointmaps.min(dim=0)[0].cpu().numpy() bb_max_corner = pointmaps.max(dim=0)[0].cpu().numpy() center = (bb_min_corner + bb_max_corner) / 2 #inner_radius = inner_radius * np.linalg.norm(bb_max_corner - bb_min_corner) / 2 # minimum radius is scalar multiple of bounding box radius bb_radius = np.linalg.norm(bb_max_corner - bb_min_corner) / 2 cam2center_dist = np.linalg.norm(center) if run_octmae: radius = max(1.2*cam2center_dist,2.5*bb_radius) else: radius = max(0.7*cam2center_dist,1.3*bb_radius) inner_radius = radius outer_radius = radius camera_poses = sample_camera_poses(center, inner_radius, outer_radius, n_poses) return camera_poses