Update app.py
Browse files
app.py
CHANGED
@@ -17,10 +17,10 @@ import trimesh
|
|
17 |
from moge.model.v1 import MoGeModel
|
18 |
from utils.geometry import compute_pointmap
|
19 |
import cv2
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
|
25 |
|
26 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
@@ -28,21 +28,27 @@ device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
28 |
outdir = "/tmp/rayst3r"
|
29 |
|
30 |
moge_model = MoGeModel.from_pretrained("Ruicheng/moge-vitl").to(device)
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
34 |
|
35 |
# print("Loading MoGe model")
|
36 |
# # Load the model from huggingface hub (or load from local).
|
37 |
|
38 |
|
39 |
-
|
40 |
-
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
|
47 |
# def colorize_points_with_turbo_all_dims(points, method='norm',cmap='turbo'):
|
48 |
# """
|
@@ -78,62 +84,56 @@ moge_model = MoGeModel.from_pretrained("Ruicheng/moge-vitl").to(device)
|
|
78 |
|
79 |
# return colors
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
#
|
92 |
-
|
93 |
-
|
94 |
-
#
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
#
|
100 |
-
|
101 |
-
#
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
107 |
|
108 |
-
# dino_model = torch.hub.load('facebookresearch/dinov2', "dinov2_vitl14_reg")
|
109 |
-
# dino_model.eval()
|
110 |
-
# dino_model.to(device)
|
111 |
|
112 |
-
# print("Loading RaySt3R model")
|
113 |
-
# rayst3r_checkpoint = hf_hub_download("bartduis/rayst3r", "rayst3r.pth")
|
114 |
-
# rayst3r_model = EvalWrapper(rayst3r_checkpoint,device='cpu')
|
115 |
-
# rayst3r_model = rayst3r_model.to(device)
|
116 |
|
117 |
-
#
|
118 |
|
119 |
-
#
|
120 |
-
#
|
121 |
-
#
|
122 |
|
123 |
-
#
|
124 |
-
#
|
125 |
|
126 |
-
#
|
127 |
-
#
|
128 |
|
129 |
-
#
|
130 |
-
#
|
131 |
-
#
|
132 |
-
#
|
133 |
|
134 |
-
#
|
135 |
-
#
|
136 |
-
#
|
137 |
|
138 |
|
139 |
def input_to_glb(outdir,img,depth_dict,mask,rotated=False):
|
@@ -202,6 +202,7 @@ def process_image(input_img):
|
|
202 |
shutil.rmtree(outdir)
|
203 |
os.makedirs(outdir)
|
204 |
input_glb = input_to_glb(outdir,input_img,depth_dict,mask,rotated=rotated)
|
|
|
205 |
print(input_glb)
|
206 |
return input_img, input_img
|
207 |
|
|
|
17 |
from moge.model.v1 import MoGeModel
|
18 |
from utils.geometry import compute_pointmap
|
19 |
import cv2
|
20 |
+
from huggingface_hub import hf_hub_download
|
21 |
+
from PIL import Image
|
22 |
+
import matplotlib.pyplot as plt
|
23 |
+
from eval_wrapper.eval import EvalWrapper, eval_scene
|
24 |
|
25 |
|
26 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
28 |
outdir = "/tmp/rayst3r"
|
29 |
|
30 |
moge_model = MoGeModel.from_pretrained("Ruicheng/moge-vitl").to(device)
|
31 |
+
dino_model = torch.hub.load('facebookresearch/dinov2', "dinov2_vitl14_reg")
|
32 |
+
dino_model.eval()
|
33 |
+
dino_model.to(device)
|
34 |
|
35 |
+
print("Loading RaySt3R model")
|
36 |
+
rayst3r_checkpoint = hf_hub_download("bartduis/rayst3r", "rayst3r.pth")
|
37 |
+
rayst3r_model = EvalWrapper(rayst3r_checkpoint,device='cpu')
|
38 |
+
rayst3r_model = rayst3r_model.to(device)
|
39 |
+
print("Loaded all models")
|
40 |
|
41 |
# print("Loading MoGe model")
|
42 |
# # Load the model from huggingface hub (or load from local).
|
43 |
|
44 |
|
45 |
+
def depth2uint16(depth):
|
46 |
+
return depth * torch.iinfo(torch.uint16).max / 10.0 # threshold is in m, convert to uint16 value
|
47 |
|
48 |
+
def save_tensor_as_png(tensor: torch.Tensor, path: str, dtype: torch.dtype | None = None):
|
49 |
+
if dtype is None:
|
50 |
+
dtype = tensor.dtype
|
51 |
+
Image.fromarray(tensor.to(dtype).cpu().numpy()).save(path)
|
52 |
|
53 |
# def colorize_points_with_turbo_all_dims(points, method='norm',cmap='turbo'):
|
54 |
# """
|
|
|
84 |
|
85 |
# return colors
|
86 |
|
87 |
+
def prep_for_rayst3r(img,depth_dict,mask):
|
88 |
+
H, W = img.shape[:2]
|
89 |
+
intrinsics = depth_dict["intrinsics"].detach().cpu()
|
90 |
+
intrinsics[0] *= W
|
91 |
+
intrinsics[1] *= H
|
92 |
+
|
93 |
+
input_dir = os.path.join(outdir, "input")
|
94 |
+
if os.path.exists(input_dir):
|
95 |
+
shutil.rmtree(input_dir)
|
96 |
+
os.makedirs(input_dir, exist_ok=True)
|
97 |
+
# save intrinsics
|
98 |
+
torch.save(intrinsics, os.path.join(input_dir, "intrinsics.pt"))
|
99 |
+
|
100 |
+
# save depth
|
101 |
+
depth = depth_dict["depth"].cpu()
|
102 |
+
depth = depth2uint16(depth)
|
103 |
+
save_tensor_as_png(depth, os.path.join(input_dir, "depth.png"),dtype=torch.uint16)
|
104 |
+
|
105 |
+
# save mask as bool
|
106 |
+
save_tensor_as_png(torch.from_numpy(mask).bool(), os.path.join(input_dir, "mask.png"),dtype=torch.bool)
|
107 |
+
# save image
|
108 |
+
save_tensor_as_png(torch.from_numpy(img), os.path.join(input_dir, "rgb.png"))
|
109 |
+
|
110 |
+
@GPU(duration = 180)
|
111 |
+
def rayst3r_to_glb(img,depth_dict,mask,max_total_points=10e6,rotated=False):
|
112 |
+
prep_for_rayst3r(img,depth_dict,mask)
|
113 |
+
print('Doneneee')
|
114 |
|
|
|
|
|
|
|
115 |
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
# rayst3r_points = eval_scene(rayst3r_model,os.path.join(outdir, "input"),do_filter_all_masks=True,dino_model=dino_model, device = device).cpu()
|
118 |
|
119 |
+
# # subsample points
|
120 |
+
# n_points = min(max_total_points,rayst3r_points.shape[0])
|
121 |
+
# rayst3r_points = rayst3r_points[torch.randperm(rayst3r_points.shape[0])[:n_points]].numpy()
|
122 |
|
123 |
+
# rayst3r_points[:,1] = -rayst3r_points[:,1]
|
124 |
+
# rayst3r_points[:,2] = -rayst3r_points[:,2]
|
125 |
|
126 |
+
# # make all points red
|
127 |
+
# colors = colorize_points_with_turbo_all_dims(rayst3r_points)
|
128 |
|
129 |
+
# # load the input glb
|
130 |
+
# scene = trimesh.Scene()
|
131 |
+
# pct = trimesh.PointCloud(rayst3r_points, colors=colors, radius=0.01)
|
132 |
+
# scene.add_geometry(pct)
|
133 |
|
134 |
+
# outfile = os.path.join(outdir, "rayst3r.glb")
|
135 |
+
# scene.export(outfile)
|
136 |
+
# return outfile
|
137 |
|
138 |
|
139 |
def input_to_glb(outdir,img,depth_dict,mask,rotated=False):
|
|
|
202 |
shutil.rmtree(outdir)
|
203 |
os.makedirs(outdir)
|
204 |
input_glb = input_to_glb(outdir,input_img,depth_dict,mask,rotated=rotated)
|
205 |
+
inference_glb = rayst3r_to_glb(input_img,depth_dict,mask,rotated=rotated)
|
206 |
print(input_glb)
|
207 |
return input_img, input_img
|
208 |
|