Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,7 @@ from eval_wrapper.eval import EvalWrapper, eval_scene
|
|
16 |
|
17 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
18 |
|
19 |
-
@GPU
|
20 |
def dummy_warmup():
|
21 |
import torch
|
22 |
if torch.cuda.is_available():
|
@@ -98,7 +98,7 @@ def prep_for_rayst3r(img,depth_dict,mask):
|
|
98 |
# save image
|
99 |
save_tensor_as_png(torch.from_numpy(img), os.path.join(input_dir, "rgb.png"))
|
100 |
|
101 |
-
@GPU
|
102 |
def rayst3r_to_glb(img,depth_dict,mask,max_total_points=10e6,rotated=False):
|
103 |
prep_for_rayst3r(img,depth_dict,mask)
|
104 |
|
@@ -159,15 +159,15 @@ def input_to_glb(outdir,img,depth_dict,mask,rotated=False):
|
|
159 |
scene.export(outfile)
|
160 |
return outfile
|
161 |
|
162 |
-
@GPU
|
163 |
def depth_moge(input_img):
|
164 |
moge_model = MoGeModel.from_pretrained("Ruicheng/moge-vitl")
|
165 |
moge_model.to(device)
|
166 |
-
input_img_torch = torch.tensor(input_img / 255, dtype=torch.float32, device=
|
167 |
output = moge_model.infer(input_img_torch).cpu()
|
168 |
return output
|
169 |
|
170 |
-
@GPU
|
171 |
def mask_rembg(input_img):
|
172 |
#masked_img = rembg.remove(input_img,)
|
173 |
output_img = rembg.remove(input_img, alpha_matting=False, post_process_mask=True)
|
@@ -186,7 +186,7 @@ def mask_rembg(input_img):
|
|
186 |
rgb = output_np[:,:,:3]
|
187 |
return mask, rgb
|
188 |
|
189 |
-
@GPU
|
190 |
def process_image(input_img):
|
191 |
# resize the input image
|
192 |
rotated = False
|
|
|
16 |
|
17 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
18 |
|
19 |
+
@GPU(duration = 180)
|
20 |
def dummy_warmup():
|
21 |
import torch
|
22 |
if torch.cuda.is_available():
|
|
|
98 |
# save image
|
99 |
save_tensor_as_png(torch.from_numpy(img), os.path.join(input_dir, "rgb.png"))
|
100 |
|
101 |
+
@GPU(duration = 180)
|
102 |
def rayst3r_to_glb(img,depth_dict,mask,max_total_points=10e6,rotated=False):
|
103 |
prep_for_rayst3r(img,depth_dict,mask)
|
104 |
|
|
|
159 |
scene.export(outfile)
|
160 |
return outfile
|
161 |
|
162 |
+
@GPU(duration = 180)
|
163 |
def depth_moge(input_img):
|
164 |
moge_model = MoGeModel.from_pretrained("Ruicheng/moge-vitl")
|
165 |
moge_model.to(device)
|
166 |
+
input_img_torch = torch.tensor(input_img / 255, dtype=torch.float32, device=device).permute(2, 0, 1)
|
167 |
output = moge_model.infer(input_img_torch).cpu()
|
168 |
return output
|
169 |
|
170 |
+
@GPU(duration = 180)
|
171 |
def mask_rembg(input_img):
|
172 |
#masked_img = rembg.remove(input_img,)
|
173 |
output_img = rembg.remove(input_img, alpha_matting=False, post_process_mask=True)
|
|
|
186 |
rgb = output_np[:,:,:3]
|
187 |
return mask, rgb
|
188 |
|
189 |
+
@GPU(duration = 180)
|
190 |
def process_image(input_img):
|
191 |
# resize the input image
|
192 |
rotated = False
|