|
import numpy as np |
|
import torch |
|
import open3d as o3d |
|
|
|
|
|
def look_at(cam_pos, target=(0,0,0), up=(0,0,1)): |
|
|
|
forward = target - cam_pos |
|
forward /= np.linalg.norm(forward) |
|
|
|
|
|
right = np.cross(up, forward) |
|
if np.linalg.norm(right) < 1e-6: |
|
up = np.array([1, 0, 0]) |
|
right = np.cross(up, forward) |
|
|
|
right /= np.linalg.norm(right) |
|
up = np.cross(forward, right) |
|
|
|
|
|
rotation = np.eye(4) |
|
rotation[:3, :3] = np.vstack([right, up, -forward]).T |
|
|
|
|
|
translation = np.eye(4) |
|
translation[:3, 3] = cam_pos |
|
|
|
cam_to_world = translation @ rotation |
|
cam_to_world[:3,2] = -cam_to_world[:3,2] |
|
cam_to_world[:3,1] = -cam_to_world[:3,1] |
|
|
|
return cam_to_world |
|
|
|
|
|
def sample_camera_poses(target: np.ndarray, inner_radius: float, outer_radius: float, n: int,seed: int = 42,mode: str = 'grid') -> np.ndarray: |
|
""" |
|
Samples `n` camera poses uniformly on a sphere of given `radius` around `target`. |
|
The cameras are positioned randomly and oriented to look at `target`. |
|
|
|
Args: |
|
target (np.ndarray): 3D point (x, y, z) that cameras should look at. |
|
inner_radius (float): Radius of the sphere. |
|
outer_radius (float): Radius of the sphere. |
|
n (int): Number of camera poses to sample. |
|
|
|
Returns: |
|
torch.Tensor: (n, 4, 4) array of transformation matrices (camera-to-world). |
|
""" |
|
cameras = [] |
|
np.random.seed(seed) |
|
|
|
u_1 = np.linspace(0,1,n,endpoint=False) |
|
u_2 = np.linspace(0,0.7,n) |
|
u_1, u_2 = np.meshgrid(u_1, u_2) |
|
u_1 = u_1.flatten() |
|
u_2 = u_2.flatten() |
|
theta = np.arccos(1-2*u_2) |
|
phi = 2*np.pi*u_1 |
|
n_poses = len(phi) |
|
|
|
radii = np.random.uniform(inner_radius, outer_radius, n_poses) |
|
cameras = [] |
|
|
|
r_z = np.array([[0,-1,0],[1,0,0],[0,0,1]]) |
|
|
|
for i in range(n_poses): |
|
|
|
x = target[0] + radii[i] * np.sin(theta[i]) * np.cos(phi[i]) |
|
y = target[1] + radii[i] * np.sin(theta[i]) * np.sin(phi[i]) |
|
z = target[2] + radii[i] * np.cos(theta[i]) |
|
cam_pos = np.array([x, y, z]) |
|
cam2world = look_at(cam_pos, target) |
|
if theta[i] == 0: |
|
cam2world[:3,:3] = cam2world[:3,:3] @ r_z |
|
cameras.append(cam2world) |
|
cameras = np.unique(cameras, axis=0) |
|
return np.stack(cameras) |
|
|
|
|
|
def pointmap_to_poses(pointmaps: torch.Tensor, n_poses: int, inner_radius: float = 1.1, outer_radius: float = 2.5, device: str = 'cuda', |
|
bb_mode: str='bb',run_octmae: bool = False) -> np.ndarray: |
|
""" |
|
Samples `n_poses` camera poses uniformly on a sphere of given `radius` around `target`. |
|
The cameras are positioned randomly and oriented to look at `target`. |
|
""" |
|
|
|
bb_min_corner = pointmaps.min(dim=0)[0].cpu().numpy() |
|
bb_max_corner = pointmaps.max(dim=0)[0].cpu().numpy() |
|
center = (bb_min_corner + bb_max_corner) / 2 |
|
bb_radius = np.linalg.norm(bb_max_corner - bb_min_corner) / 2 |
|
cam2center_dist = np.linalg.norm(center) |
|
|
|
if run_octmae: |
|
radius = max(1.2*cam2center_dist,2.5*bb_radius) |
|
else: |
|
radius = max(0.7*cam2center_dist,1.3*bb_radius) |
|
inner_radius = radius |
|
outer_radius = radius |
|
camera_poses = sample_camera_poses(center, inner_radius, outer_radius, n_poses) |
|
return camera_poses |
|
|