File size: 9,726 Bytes
70d1188 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
bb = breakpoint
import torch
from torch.utils.data import DataLoader
import wandb
from argparse import ArgumentParser
from datasets.octmae import OctMae
from datasets.foundation_pose import FoundationPose
from datasets.generic_loader import GenericLoader
from utils.collate import collate
from models.rayquery import RayQuery
from engine import train_epoch, eval_epoch, eval_model
import torch.nn as nn
from models.rayquery import RayQuery, PointmapEncoder, RayEncoder
from models.losses import *
import utils.misc as misc
import os
from utils.viz import just_load_viz
from utils.fusion import fuse_batch
import socket
import time
from utils.augmentations import *
def parse_args():
parser = ArgumentParser()
parser.add_argument("--dataset_train", type=str, default="TableOfCubes(size=10,n_views=2,seed=747)")
parser.add_argument("--dataset_test", type=str, default="TableOfCubes(size=10,n_views=2,seed=787)")
parser.add_argument("--dataset_just_load", type=str, default=None)
parser.add_argument("--logdir", type=str, default="logs")
parser.add_argument("--batch_size", type=int, default=5)
parser.add_argument("--n_epochs", type=int, default=100)
parser.add_argument("--n_workers", type=int, default=4)
parser.add_argument("--model", type=str, default="RayQuery(ray_enc=RayEncoder(),pointmap_enc=PointmapEncoder(),criterion=RayCompletion(ConfLoss(L21)))")
parser.add_argument("--save_every", type=int, default=1)
parser.add_argument("--resume", type=str, default=None)
parser.add_argument("--eval_every", type=int, default=3)
parser.add_argument("--wandb_project", type=str, default=None)
parser.add_argument("--wandb_run_name", type=str, default="init")
parser.add_argument("--just_load", action="store_true")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--rr_addr", type=str, default="0.0.0.0:"+os.getenv("RERUN_RECORDING","9876"))
parser.add_argument("--mesh", action="store_true")
parser.add_argument("--max_norm", type=float, default=-1)
parser.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1.5e-4, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=10)
parser.add_argument('--weight_decay', type=float, default=0.01)
parser.add_argument('--normalize_mode',type=str,default='None')
parser.add_argument('--start_from',type=str,default=None)
parser.add_argument('--augmentor',type=str,default='None')
return parser.parse_args()
def main(args):
load_dino = False
if not args.just_load:
dataset_train = eval(args.dataset_train)
dataset_test = eval(args.dataset_test)
if not dataset_train.prefetch_dino:
load_dino = True
rank, world_size, local_rank = misc.setup_distributed()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=world_size, rank=rank, shuffle=True
)
sampler_test = torch.utils.data.DistributedSampler(
dataset_test, num_replicas=world_size, rank=rank, shuffle=False
)
train_loader = DataLoader(
dataset_train, sampler=sampler_train, batch_size=args.batch_size, shuffle=False, collate_fn=collate,
num_workers=args.n_workers,
pin_memory=True,
prefetch_factor=2,
drop_last=True
)
test_loader = DataLoader(
dataset_test, sampler=sampler_test, batch_size=args.batch_size, shuffle=False, collate_fn=collate,
num_workers=args.n_workers,
pin_memory=True,
prefetch_factor=2,
drop_last=True
)
n_scenes_epoch = len(train_loader) * args.batch_size * world_size
print(f"Number of scenes in epoch: {n_scenes_epoch}")
else:
if args.dataset_just_load is None:
dataset = eval(args.dataset_train)
else:
dataset = eval(args.dataset_just_load)
if not dataset.prefetch_dino:
load_dino = True
rank, world_size, local_rank = misc.setup_distributed()
sampler_train = torch.utils.data.DistributedSampler(
dataset, num_replicas=world_size, rank=rank, shuffle=False
)
just_loader = DataLoader(dataset, sampler=sampler_train, batch_size=args.batch_size, shuffle=False, collate_fn=collate,
pin_memory=True,
drop_last=True
)
model = eval(args.model).to(args.device)
if args.augmentor != 'None':
augmentor = eval(args.augmentor)
else:
augmentor = None
if load_dino and len(model.dino_layers) > 0:
dino_model = torch.hub.load('facebookresearch/dinov2', "dinov2_vitl14_reg")
dino_model.eval()
dino_model.to("cuda")
else:
dino_model = None
# distribute model
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank],find_unused_parameters=True)
model_without_ddp = model.module if hasattr(model, 'module') else model
eff_batch_size = args.batch_size * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
param_groups = misc.add_weight_decay(model_without_ddp, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
os.makedirs(args.logdir,exist_ok=True)
start_epoch = 0
print("Running on host %s" % socket.gethostname())
if args.resume and os.path.exists(os.path.join(args.resume, "checkpoint-latest.pth")):
checkpoint = torch.load(os.path.join(args.resume, "checkpoint-latest.pth"), map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
model_params = list(model.parameters())
print("Resume checkpoint %s" % args.resume)
if 'optimizer' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch'] + 1
print("With optim & sched!")
del checkpoint
elif args.start_from is not None:
checkpoint = torch.load(args.start_from, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
print("Start from checkpoint %s" % args.start_from)
if args.just_load:
with torch.no_grad():
while True:
#test_log_dict = eval_epoch(model,just_loader,device=args.device,dino_model=dino_model,args=args)
for data in just_loader:
pred, gt, loss_dict, batch = eval_model(model,data,mode='viz',args=args,dino_model=dino_model,augmentor=augmentor)
# cast to float32 for visualization
gt = {k: v.float() for k, v in gt.items()}
pred = {k: v.float() for k, v in pred.items()}
#loss_dict = eval_model(model,data,mode='loss',device=args.device)
#print(f"Loss: {loss_dict['loss']:.4f}")
# summarize all keys in loss_dict in table
print(f"{'Key':<10} {'Value':<10}")
print("-"*20)
for key, value in loss_dict.items():
print(f"{key:<10}: {value:.4f}")
print("-"*20)
name = args.logdir
addr = args.rr_addr
if args.mesh:
fused_meshes = fuse_batch(pred,gt,data, voxel_size=0.002)
else:
fused_meshes = None
just_load_viz(pred,gt,batch,addr=addr,name=name,fused_meshes=fused_meshes)
breakpoint()
return
else:
if args.wandb_project and misc.get_rank() == 0:
wandb.init(project=args.wandb_project, name=args.wandb_run_name, config=args)
log_wandb = args.wandb_project
else:
log_wandb = None
for epoch in range(start_epoch,args.n_epochs):
start_time = time.time()
log_dict = train_epoch(model,train_loader,optimizer,device=args.device,max_norm=args.max_norm,epoch=epoch,
log_wandb=log_wandb,batch_size=eff_batch_size,args=args,dino_model=dino_model,augmentor=augmentor)
end_time = time.time()
print(f"Epoch {epoch} train loss: {log_dict['loss']:.4f} grad_norm: {log_dict['grad_norm']:.4f} \n")
print(f"Time taken for epoch {epoch}: {end_time - start_time:.2f} seconds")
if epoch % args.eval_every == 0:
test_log_dict = eval_epoch(model,test_loader,device=args.device,dino_model=dino_model,args=args,augmentor=augmentor)
print(f"Epoch {epoch} test loss: {test_log_dict['loss']:.4f} \n")
if log_wandb:
wandb_dict = {f"test_{k}":v for k,v in test_log_dict.items()}
wandb.log(wandb_dict, step=(epoch+1)*n_scenes_epoch)
if epoch % args.save_every == 0:
# this saves the model every epoch and doesn't overwrite but it becomes tremendous, huge
#misc.save_model(args, epoch, model, optimizer)
misc.save_model(args, epoch, model_without_ddp, optimizer, epoch_name=f"latest")
if __name__ == "__main__":
args = parse_args()
main(args) |