File size: 6,590 Bytes
70d1188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import numpy as np
import gradio as gr
import torch
import rembg
import trimesh
from moge.model.v1 import MoGeModel
from utils.geometry import compute_pointmap
import os, shutil
import cv2
from huggingface_hub import hf_hub_download
from PIL import Image
import matplotlib.pyplot as plt
from eval_wrapper.eval import EvalWrapper, eval_scene
from torchvision import transforms

outdir = "/tmp/rayst3r"

# loading all necessary models
print("Loading DINOv2 model")
dino_model = torch.hub.load('facebookresearch/dinov2', "dinov2_vitl14_reg")
dino_model.eval()
dino_model.to("cuda")

print("Loading MoGe model")
device = torch.device("cuda")
# Load the model from huggingface hub (or load from local).
moge_model = MoGeModel.from_pretrained("Ruicheng/moge-vitl").to(device)

print("Loading RaySt3R model")
rayst3r_checkpoint = hf_hub_download("bartduis/rayst3r", "rayst3r.pth")
rayst3r_model = EvalWrapper(rayst3r_checkpoint)

def depth2uint16(depth):
    return depth * torch.iinfo(torch.uint16).max / 10.0 # threshold is in m, convert to uint16 value

def save_tensor_as_png(tensor: torch.Tensor, path: str, dtype: torch.dtype | None = None):
    if dtype is None:
        dtype = tensor.dtype
    Image.fromarray(tensor.to(dtype).cpu().numpy()).save(path)

def colorize_points_with_turbo_all_dims(points, method='norm',cmap='turbo'):
    """
    Assigns colors to 3D points using the 'turbo' colormap based on a scalar computed from all 3 dimensions.

    Args:
        points (np.ndarray): (N, 3) array of 3D points.
        method (str): Method for reducing 3D point to scalar. Options: 'norm', 'pca'.

    Returns:
        np.ndarray: (N, 3) RGB colors in [0, 1].
    """
    assert points.shape[1] == 3, "Input must be of shape (N, 3)"

    if method == 'norm':
        scalar = np.linalg.norm(points, axis=1)
    elif method == 'pca':
        # Project onto first principal component
        mean = points.mean(axis=0)
        centered = points - mean
        u, s, vh = np.linalg.svd(centered, full_matrices=False)
        scalar = centered @ vh[0]  # Project onto first principal axis
    else:
        raise ValueError(f"Unknown method '{method}'")

    # Normalize scalar to [0, 1]
    scalar_min, scalar_max = scalar.min(), scalar.max()
    normalized = (scalar - scalar_min) / (scalar_max - scalar_min + 1e-8)

    # Apply turbo colormap
    cmap = plt.colormaps.get_cmap(cmap)
    colors = cmap(normalized)[:, :3]  # Drop alpha

    return colors

def prep_for_rayst3r(img,depth_dict,mask):
    H, W = img.shape[:2]
    intrinsics = depth_dict["intrinsics"].detach().cpu()
    intrinsics[0] *= W
    intrinsics[1] *= H

    input_dir = os.path.join(outdir, "input")
    if os.path.exists(input_dir):
        shutil.rmtree(input_dir)
    os.makedirs(input_dir, exist_ok=True)
    # save intrinsics
    torch.save(intrinsics, os.path.join(input_dir, "intrinsics.pt"))

    # save depth
    depth = depth_dict["depth"].cpu()
    depth = depth2uint16(depth)
    save_tensor_as_png(depth, os.path.join(input_dir, "depth.png"),dtype=torch.uint16)
    
    # save mask as bool 
    save_tensor_as_png(torch.from_numpy(mask).bool(), os.path.join(input_dir, "mask.png"),dtype=torch.bool)
    # save image
    save_tensor_as_png(torch.from_numpy(img), os.path.join(input_dir, "rgb.png"))

def rayst3r_to_glb(img,depth_dict,mask,max_total_points=10e6,rotated=False):
    prep_for_rayst3r(img,depth_dict,mask)
    rayst3r_points = eval_scene(rayst3r_model,os.path.join(outdir, "input"),do_filter_all_masks=True,dino_model=dino_model).cpu()

    # subsample points
    n_points = min(max_total_points,rayst3r_points.shape[0])
    rayst3r_points = rayst3r_points[torch.randperm(rayst3r_points.shape[0])[:n_points]].numpy()
    
    rayst3r_points[:,1] = -rayst3r_points[:,1]
    rayst3r_points[:,2] = -rayst3r_points[:,2]
    
    # make all points red
    colors = colorize_points_with_turbo_all_dims(rayst3r_points)

    # load the input glb
    scene = trimesh.Scene()
    pct = trimesh.PointCloud(rayst3r_points, colors=colors, radius=0.01)
    scene.add_geometry(pct)
    
    outfile = os.path.join(outdir, "rayst3r.glb")
    scene.export(outfile)
    return outfile


def input_to_glb(outdir,img,depth_dict,mask,rotated=False):
    H, W = img.shape[:2]
    intrinsics = depth_dict["intrinsics"].cpu().numpy()
    intrinsics[0] *= W
    intrinsics[1] *= H
    
    depth = depth_dict["depth"].cpu().numpy()
    cam2world = np.eye(4)
    points_world = compute_pointmap(depth, cam2world, intrinsics)

    scene = trimesh.Scene()
    pts = np.concatenate([p[m] for p,m in zip(points_world,mask)])
    col = np.concatenate([c[m] for c,m in zip(img,mask)])

    pts = pts.reshape(-1,3)
    pts[:,1] = -pts[:,1]
    pts[:,2] = -pts[:,2]


    pct = trimesh.PointCloud(pts, colors=col.reshape(-1,3))
    scene.add_geometry(pct)
    
    outfile = os.path.join(outdir, "input.glb")
    scene.export(outfile)
    return outfile

def depth_moge(input_img):
    input_img_torch = torch.tensor(input_img / 255, dtype=torch.float32, device=device).permute(2, 0, 1)
    output = moge_model.infer(input_img_torch)
    return output 

def mask_rembg(input_img):
    #masked_img = rembg.remove(input_img,)
    output_img = rembg.remove(input_img, alpha_matting=False, post_process_mask=True)

    # Convert to NumPy array
    output_np = np.array(output_img)
    alpha = output_np[..., 3]

    # Step 2: Erode the alpha mask to shrink object slightly
    kernel = np.ones((3, 3), np.uint8)  # Adjust size for aggressiveness
    eroded_alpha = cv2.erode(alpha, kernel, iterations=1)
    # Step 3: Replace alpha channel
    output_np[..., 3] = eroded_alpha
  
    mask = output_np[:,:,-1] >= 128
    rgb = output_np[:,:,:3]
    return mask, rgb 

def process_image(input_img):
    # resize the input image
    rotated = False
    #if input_img.shape[0] > input_img.shape[1]:
        #input_img = cv2.rotate(input_img, cv2.ROTATE_90_COUNTERCLOCKWISE)
        #rotated = True
    input_img = cv2.resize(input_img, (640, 480))
    mask, rgb = mask_rembg(input_img)
    depth_dict = depth_moge(input_img)

    if os.path.exists(outdir):
        shutil.rmtree(outdir)
    os.makedirs(outdir)

    input_glb = input_to_glb(outdir,input_img,depth_dict,mask,rotated=rotated)
    
    # visualize the input points in 3D in gradio
    inference_glb = rayst3r_to_glb(input_img,depth_dict,mask,rotated=rotated)

    return input_glb, inference_glb   

demo = gr.Interface(
    process_image,
    gr.Image(),
    [gr.Model3D(label="Input"), gr.Model3D(label="RaySt3R",)]
)

if __name__ == "__main__":
    demo.launch()