Spaces:
Runtime error
Runtime error
bankholdup
commited on
Commit
•
2b1dfa7
1
Parent(s):
aa616da
Update app.py
Browse files
app.py
CHANGED
@@ -14,6 +14,7 @@ from torch import nn, autograd, optim
|
|
14 |
from torch.nn import functional as F
|
15 |
from tqdm import tqdm
|
16 |
import lpips
|
|
|
17 |
|
18 |
|
19 |
#from e4e_projection import projection as e4e_projection
|
@@ -35,6 +36,9 @@ from e4e.models.stylegan2.model import Generator
|
|
35 |
from util import *
|
36 |
from huggingface_hub import hf_hub_download
|
37 |
|
|
|
|
|
|
|
38 |
transform = transforms.Compose([
|
39 |
transforms.Resize((256, 256)),
|
40 |
transforms.ToTensor(),
|
@@ -102,12 +106,11 @@ cat_decoder.load_state_dict(cat_d_filt, strict=True)
|
|
102 |
cat_decoder.eval()
|
103 |
cat_decoder.to(device)
|
104 |
|
|
|
|
|
|
|
105 |
|
106 |
def run_alignment(image_path):
|
107 |
-
import dlib
|
108 |
-
from e4e.utils.alignment import align_face
|
109 |
-
dlib_path = hf_hub_download(repo_id="bankholdup/stylegan_petbreeder", filename="shape_predictor_68_face_landmarks.dat")
|
110 |
-
predictor = dlib.shape_predictor(dlib_path)
|
111 |
aligned_image = align_face(filepath=image_path, predictor=predictor)
|
112 |
print("Aligned image has shape: {}".format(aligned_image.size))
|
113 |
return aligned_image
|
@@ -124,10 +127,16 @@ def gen_im(ffhq_codes, dog_codes, cat_codes, model_type='ffhq'):
|
|
124 |
imgs, _ = custom_decoder([custom_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
|
125 |
return tensor2im(imgs[0])
|
126 |
|
|
|
|
|
|
|
127 |
|
128 |
def inference(img):
|
|
|
|
|
|
|
129 |
img.save('out.jpg')
|
130 |
-
|
131 |
input_image = run_alignment('out.jpg')
|
132 |
transformed_image = transform(input_image)
|
133 |
|
|
|
14 |
from torch.nn import functional as F
|
15 |
from tqdm import tqdm
|
16 |
import lpips
|
17 |
+
import time
|
18 |
|
19 |
|
20 |
#from e4e_projection import projection as e4e_projection
|
|
|
36 |
from util import *
|
37 |
from huggingface_hub import hf_hub_download
|
38 |
|
39 |
+
import dlib
|
40 |
+
from e4e.utils.alignment import align_face
|
41 |
+
|
42 |
transform = transforms.Compose([
|
43 |
transforms.Resize((256, 256)),
|
44 |
transforms.ToTensor(),
|
|
|
106 |
cat_decoder.eval()
|
107 |
cat_decoder.to(device)
|
108 |
|
109 |
+
dlib_path = hf_hub_download(repo_id="bankholdup/stylegan_petbreeder", filename="shape_predictor_68_face_landmarks.dat")
|
110 |
+
predictor = dlib.shape_predictor(dlib_path)
|
111 |
+
|
112 |
|
113 |
def run_alignment(image_path):
|
|
|
|
|
|
|
|
|
114 |
aligned_image = align_face(filepath=image_path, predictor=predictor)
|
115 |
print("Aligned image has shape: {}".format(aligned_image.size))
|
116 |
return aligned_image
|
|
|
127 |
imgs, _ = custom_decoder([custom_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
|
128 |
return tensor2im(imgs[0])
|
129 |
|
130 |
+
def set_seed(rd):
|
131 |
+
np.random.seed(rd)
|
132 |
+
torch.manual_seed(rd)
|
133 |
|
134 |
def inference(img):
|
135 |
+
random_seed = round(time.time() * 1000)
|
136 |
+
set_seed(random_seed)
|
137 |
+
|
138 |
img.save('out.jpg')
|
139 |
+
|
140 |
input_image = run_alignment('out.jpg')
|
141 |
transformed_image = transform(input_image)
|
142 |
|