Мясников Филипп Сергеевич
Fix
ceabeea
raw
history blame
5.85 kB
import os
from PIL import Image
import torch
import gradio as gr
torch.backends.cudnn.benchmark = True
import math
import random
import numpy as np
from torch import nn, autograd, optim
from torch.nn import functional as F
from tqdm import tqdm
import lpips
import time
from copy import deepcopy
import imageio
import sys
from PIL import Image
import torchvision.transforms as transforms
from argparse import Namespace
from e4e.utils.common import tensor2im
from e4e.models.psp import pSp
from e4e.models.encoders import psp_encoders
from e4e.models.stylegan2.model import Generator
from huggingface_hub import hf_hub_download
import dlib
from e4e.utils.alignment import align_face
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
resize_dims = (256, 256)
device= 'cpu'
ffhq_model_path = hf_hub_download(repo_id="bankholdup/stylegan_petbreeder", filename="e4e_ffhq512.pt")
ffhq_ckpt = torch.load(ffhq_model_path, map_location='cpu')
ffhq_latent_avg = ffhq_ckpt['latent_avg'].to(device)
ffhq_opts = ffhq_ckpt['opts']
ffhq_opts['checkpoint_path'] = ffhq_model_path
ffhq_opts= Namespace(**ffhq_opts)
ffhq_encoder = psp_encoders.Encoder4Editing(50, 'ir_se', ffhq_opts)
ffhq_e_filt = {k[len('encoder') + 1:]: v for k, v in ffhq_ckpt['state_dict'].items() if k[:len('encoder')] == 'encoder'}
ffhq_encoder.load_state_dict(ffhq_e_filt, strict=True)
ffhq_encoder.eval()
ffhq_encoder.to(device)
ffhq_decoder = Generator(512, 512, 8, channel_multiplier=2)
ffhq_d_filt = {k[len('decoder') + 1:]: v for k, v in ffhq_ckpt['state_dict'].items() if k[:len('decoder')] == 'decoder'}
ffhq_decoder.load_state_dict(ffhq_d_filt, strict=True)
ffhq_decoder.eval()
ffhq_decoder.to(device)
dog_model_path = hf_hub_download(repo_id="bankholdup/stylegan_petbreeder", filename="e4e_ffhq512_dog.pt")
dog_ckpt = torch.load(dog_model_path, map_location='cpu')
dog_latent_avg = dog_ckpt['latent_avg'].to(device)
dog_opts = dog_ckpt['opts']
dog_opts['checkpoint_path'] = dog_model_path
dog_opts= Namespace(**dog_opts)
dog_encoder = psp_encoders.Encoder4Editing(50, 'ir_se', dog_opts)
dog_e_filt = {k[len('encoder') + 1:]: v for k, v in dog_ckpt['state_dict'].items() if k[:len('encoder')] == 'encoder'}
dog_encoder.load_state_dict(dog_e_filt, strict=True)
dog_encoder.eval()
dog_encoder.to(device)
dog_decoder = Generator(512, 512, 8, channel_multiplier=2)
dog_d_filt = {k[len('decoder') + 1:]: v for k, v in dog_ckpt['state_dict'].items() if k[:len('decoder')] == 'decoder'}
dog_decoder.load_state_dict(dog_d_filt, strict=True)
dog_decoder.eval()
dog_decoder.to(device)
cat_model_path = hf_hub_download(repo_id="bankholdup/stylegan_petbreeder", filename="e4e_ffhq512_cat.pt")
cat_ckpt = torch.load(cat_model_path, map_location='cpu')
cat_latent_avg = cat_ckpt['latent_avg'].to(device)
cat_opts = cat_ckpt['opts']
cat_opts['checkpoint_path'] = cat_model_path
cat_opts= Namespace(**cat_opts)
cat_encoder = psp_encoders.Encoder4Editing(50, 'ir_se', cat_opts)
cat_e_filt = {k[len('encoder') + 1:]: v for k, v in cat_ckpt['state_dict'].items() if k[:len('encoder')] == 'encoder'}
cat_encoder.load_state_dict(cat_e_filt, strict=True)
cat_encoder.eval()
cat_encoder.to(device)
cat_decoder = Generator(512, 512, 8, channel_multiplier=2)
cat_d_filt = {k[len('decoder') + 1:]: v for k, v in cat_ckpt['state_dict'].items() if k[:len('decoder')] == 'decoder'}
cat_decoder.load_state_dict(cat_d_filt, strict=True)
cat_decoder.eval()
cat_decoder.to(device)
dlib_path = hf_hub_download(repo_id="bankholdup/stylegan_petbreeder", filename="shape_predictor_68_face_landmarks.dat")
predictor = dlib.shape_predictor(dlib_path)
def run_alignment(image_path):
aligned_image = align_face(filepath=image_path, predictor=predictor)
print("Aligned image has shape: {}".format(aligned_image.size))
return aligned_image
def gen_im(ffhq_codes, dog_codes, cat_codes, model_type='ffhq'):
if model_type=='ffhq':
imgs, _ = ffhq_decoder([ffhq_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
elif model_type=='Dog':
imgs, _ = dog_decoder([dog_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
elif model_type=='Cat':
imgs, _ = cat_decoder([cat_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
else:
imgs, _ = custom_decoder([custom_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
return tensor2im(imgs[0])
def set_seed(rd):
torch.manual_seed(rd)
def inference(img, model):
random_seed = round(time.time() * 1000)
set_seed(random_seed)
img.save('out.jpg')
input_image = run_alignment('out.jpg')
transformed_image = transform(input_image)
ffhq_codes = ffhq_encoder(transformed_image.unsqueeze(0).to(device).float())
ffhq_codes = ffhq_codes + ffhq_latent_avg.repeat(ffhq_codes.shape[0], 1, 1)
cat_codes = cat_encoder(transformed_image.unsqueeze(0).to(device).float())
cat_codes = cat_codes + ffhq_latent_avg.repeat(cat_codes.shape[0], 1, 1)
dog_codes = dog_encoder(transformed_image.unsqueeze(0).to(device).float())
dog_codes = dog_codes + ffhq_latent_avg.repeat(dog_codes.shape[0], 1, 1)
npimage = gen_im(ffhq_codes, dog_codes, cat_codes, model)
imageio.imwrite('filename.jpeg', npimage)
return 'filename.jpeg'
title = "PetBreeder v1.1"
description = "Gradio Demo for PetBreeder. Based on [Colab](https://colab.research.google.com/github/tg-bomze/collection-of-notebooks/blob/master/PetBreeder.ipynb) by [@MLArt](https://t.me/MLArt)."
gr.Interface(inference,
[gr.inputs.Image(type="pil"),
gr.inputs.Dropdown(choices=['Cat','Dog'], type='value', default='Cat', label='Model')],
gr.outputs.Image(type="file"),
title=title,
description=description).launch()