Spaces:
Build error
Build error
bankholdup
commited on
Commit
•
c0ad07a
1
Parent(s):
468bc22
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,7 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
import argparse
|
4 |
-
import logging
|
5 |
-
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
-
import datetime
|
9 |
import gradio as gr
|
10 |
|
11 |
-
from transformers import (
|
12 |
-
CTRLLMHeadModel,
|
13 |
-
CTRLTokenizer,
|
14 |
-
GPT2LMHeadModel,
|
15 |
-
GPT2Tokenizer,
|
16 |
-
OpenAIGPTLMHeadModel,
|
17 |
-
OpenAIGPTTokenizer,
|
18 |
-
TransfoXLLMHeadModel,
|
19 |
-
TransfoXLTokenizer,
|
20 |
-
XLMTokenizer,
|
21 |
-
XLMWithLMHeadModel,
|
22 |
-
XLNetLMHeadModel,
|
23 |
-
XLNetTokenizer,
|
24 |
-
)
|
25 |
-
|
26 |
-
|
27 |
-
logging.basicConfig(
|
28 |
-
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO,
|
29 |
-
)
|
30 |
-
logger = logging.getLogger(__name__)
|
31 |
-
|
32 |
-
MAX_LENGTH = int(10000) # Hardcoded max length to avoid infinite loop
|
33 |
-
|
34 |
-
MODEL_CLASSES = {
|
35 |
-
"gpt2": (GPT2LMHeadModel, GPT2Tokenizer),
|
36 |
-
"ctrl": (CTRLLMHeadModel, CTRLTokenizer),
|
37 |
-
"openai-gpt": (OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
|
38 |
-
"xlnet": (XLNetLMHeadModel, XLNetTokenizer),
|
39 |
-
"transfo-xl": (TransfoXLLMHeadModel, TransfoXLTokenizer),
|
40 |
-
"xlm": (XLMWithLMHeadModel, XLMTokenizer),
|
41 |
-
}
|
42 |
-
|
43 |
def set_seed(args):
|
44 |
rd = np.random.randint(100000)
|
45 |
print('seed =', rd)
|
@@ -48,201 +10,23 @@ def set_seed(args):
|
|
48 |
if args.n_gpu > 0:
|
49 |
torch.cuda.manual_seed_all(rd)
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
#
|
54 |
-
|
55 |
-
|
56 |
-
def prepare_ctrl_input(args, _, tokenizer, prompt_text):
|
57 |
-
if args.temperature > 0.7:
|
58 |
-
logger.info("CTRL typically works better with lower temperatures (and lower top_k).")
|
59 |
-
|
60 |
-
encoded_prompt = tokenizer.encode(prompt_text, add_special_tokens=False)
|
61 |
-
if not any(encoded_prompt[0] == x for x in tokenizer.control_codes.values()):
|
62 |
-
logger.info("WARNING! You are not starting your generation from a control code so you won't get good results")
|
63 |
-
return prompt_text
|
64 |
-
|
65 |
-
|
66 |
-
def prepare_xlm_input(args, model, tokenizer, prompt_text):
|
67 |
-
# kwargs = {"language": None, "mask_token_id": None}
|
68 |
-
|
69 |
-
# Set the language
|
70 |
-
use_lang_emb = hasattr(model.config, "use_lang_emb") and model.config.use_lang_emb
|
71 |
-
if hasattr(model.config, "lang2id") and use_lang_emb:
|
72 |
-
available_languages = model.config.lang2id.keys()
|
73 |
-
if args.xlm_language in available_languages:
|
74 |
-
language = args.xlm_language
|
75 |
-
else:
|
76 |
-
language = None
|
77 |
-
while language not in available_languages:
|
78 |
-
language = input("Using XLM. Select language in " + str(list(available_languages)) + " >>> ")
|
79 |
-
|
80 |
-
model.config.lang_id = model.config.lang2id[language]
|
81 |
-
# kwargs["language"] = tokenizer.lang2id[language]
|
82 |
-
|
83 |
-
# TODO fix mask_token_id setup when configurations will be synchronized between models and tokenizers
|
84 |
-
# XLM masked-language modeling (MLM) models need masked token
|
85 |
-
# is_xlm_mlm = "mlm" in args.model_name_or_path
|
86 |
-
# if is_xlm_mlm:
|
87 |
-
# kwargs["mask_token_id"] = tokenizer.mask_token_id
|
88 |
-
|
89 |
-
return prompt_text
|
90 |
-
|
91 |
-
|
92 |
-
def prepare_xlnet_input(args, _, tokenizer, prompt_text):
|
93 |
-
prompt_text = (args.padding_text if args.padding_text else PADDING_TEXT) + prompt_text
|
94 |
-
return prompt_text
|
95 |
-
|
96 |
-
|
97 |
-
def prepare_transfoxl_input(args, _, tokenizer, prompt_text):
|
98 |
-
prompt_text = (args.padding_text if args.padding_text else PADDING_TEXT) + prompt_text
|
99 |
-
return prompt_text
|
100 |
-
|
101 |
-
|
102 |
-
PREPROCESSING_FUNCTIONS = {
|
103 |
-
"ctrl": prepare_ctrl_input,
|
104 |
-
"xlm": prepare_xlm_input,
|
105 |
-
"xlnet": prepare_xlnet_input,
|
106 |
-
"transfo-xl": prepare_transfoxl_input,
|
107 |
-
}
|
108 |
-
|
109 |
-
|
110 |
-
def adjust_length_to_model(length, max_sequence_length):
|
111 |
-
if length < 0 and max_sequence_length > 0:
|
112 |
-
length = max_sequence_length
|
113 |
-
elif 0 < max_sequence_length < length:
|
114 |
-
length = max_sequence_length # No generation bigger than model size
|
115 |
-
elif length < 0:
|
116 |
-
length = MAX_LENGTH # avoid infinite loop
|
117 |
-
return length
|
118 |
-
|
119 |
-
|
120 |
-
def main():
|
121 |
-
parser = argparse.ArgumentParser()
|
122 |
-
parser.add_argument(
|
123 |
-
"--model_type",
|
124 |
-
default=None,
|
125 |
-
type=str,
|
126 |
-
required=True,
|
127 |
-
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
|
128 |
-
)
|
129 |
-
parser.add_argument(
|
130 |
-
"--model_name_or_path",
|
131 |
-
default=None,
|
132 |
-
type=str,
|
133 |
-
required=True,
|
134 |
-
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
|
135 |
-
)
|
136 |
-
|
137 |
-
parser.add_argument("--prompt", type=str, default="")
|
138 |
-
parser.add_argument("--length", type=int, default=20)
|
139 |
-
parser.add_argument("--stop_token", type=str, default="</s>", help="Token at which lyrics generation is stopped")
|
140 |
-
|
141 |
-
parser.add_argument(
|
142 |
-
"--temperature",
|
143 |
-
type=float,
|
144 |
-
default=1.0,
|
145 |
-
help="temperature of 1.0 has no effect, lower tend toward greedy sampling",
|
146 |
-
)
|
147 |
-
parser.add_argument(
|
148 |
-
"--repetition_penalty", type=float, default=1.0, help="primarily useful for CTRL model; in that case, use 1.2"
|
149 |
-
)
|
150 |
-
parser.add_argument("--k", type=int, default=0)
|
151 |
-
parser.add_argument("--p", type=float, default=0.9)
|
152 |
-
|
153 |
-
parser.add_argument("--padding_text", type=str, default="", help="Padding lyrics for Transfo-XL and XLNet.")
|
154 |
-
parser.add_argument("--xlm_language", type=str, default="", help="Optional language when used with the XLM model.")
|
155 |
-
|
156 |
-
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
|
157 |
-
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
|
158 |
-
parser.add_argument("--num_return_sequences", type=int, default=1, help="The number of samples to generate.")
|
159 |
-
args = parser.parse_args()
|
160 |
-
|
161 |
-
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
162 |
-
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
|
163 |
-
|
164 |
-
# Initialize the model and tokenizer
|
165 |
-
try:
|
166 |
-
args.model_type = args.model_type.lower()
|
167 |
-
model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
|
168 |
-
except KeyError:
|
169 |
-
raise KeyError("the model {} you specified is not supported. You are welcome to add it and open a PR :)")
|
170 |
-
|
171 |
-
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
|
172 |
-
model = model_class.from_pretrained(args.model_name_or_path)
|
173 |
-
model.to(args.device)
|
174 |
-
|
175 |
-
args.length = adjust_length_to_model(args.length, max_sequence_length=model.config.max_position_embeddings)
|
176 |
-
logger.info(args)
|
177 |
-
generated_sequences = []
|
178 |
-
prompt_text = ""
|
179 |
-
while prompt_text != "stop":
|
180 |
-
set_seed(args)
|
181 |
-
while not len(prompt_text):
|
182 |
-
prompt_text = args.prompt if args.prompt else input("Context >>> ")
|
183 |
-
|
184 |
-
# Different models need different input formatting and/or extra arguments
|
185 |
-
requires_preprocessing = args.model_type in PREPROCESSING_FUNCTIONS.keys()
|
186 |
-
if requires_preprocessing:
|
187 |
-
prepare_input = PREPROCESSING_FUNCTIONS.get(args.model_type)
|
188 |
-
preprocessed_prompt_text = prepare_input(args, model, tokenizer, prompt_text)
|
189 |
-
encoded_prompt = tokenizer.encode(
|
190 |
-
preprocessed_prompt_text, add_special_tokens=False, return_tensors="pt", add_space_before_punct_symbol=True
|
191 |
-
)
|
192 |
-
else:
|
193 |
-
encoded_prompt = tokenizer.encode(prompt_text, add_special_tokens=False, return_tensors="pt")
|
194 |
-
encoded_prompt = encoded_prompt.to(args.device)
|
195 |
-
|
196 |
-
output_sequences = model.generate(
|
197 |
-
input_ids=encoded_prompt,
|
198 |
-
max_length=args.length + len(encoded_prompt[0]),
|
199 |
-
temperature=args.temperature,
|
200 |
-
top_k=args.k,
|
201 |
-
top_p=args.p,
|
202 |
-
repetition_penalty=args.repetition_penalty,
|
203 |
-
do_sample=True,
|
204 |
-
num_return_sequences=args.num_return_sequences,
|
205 |
-
)
|
206 |
-
|
207 |
-
# Remove the batch dimension when returning multiple sequences
|
208 |
-
if len(output_sequences.shape) > 2:
|
209 |
-
output_sequences.squeeze_()
|
210 |
-
|
211 |
-
now = datetime.datetime.now()
|
212 |
-
date_time = now.strftime('%Y%m%d_%H%M%S%f')
|
213 |
-
|
214 |
-
for generated_sequence_idx, generated_sequence in enumerate(output_sequences):
|
215 |
-
print("ruGPT:".format(generated_sequence_idx + 1))
|
216 |
-
generated_sequence = generated_sequence.tolist()
|
217 |
-
|
218 |
-
# Decode lyrics
|
219 |
-
text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)
|
220 |
-
|
221 |
-
# Remove all lyrics after the stop token
|
222 |
-
text = text[: text.find(args.stop_token) if args.stop_token else None]
|
223 |
-
|
224 |
-
# Add the prompt at the beginning of the sequence. Remove the excess lyrics that was used for pre-processing
|
225 |
-
total_sequence = (
|
226 |
-
prompt_text + text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True)) :]
|
227 |
-
)
|
228 |
-
|
229 |
-
generated_sequences.append(total_sequence)
|
230 |
-
# os.system('clear')
|
231 |
-
print(total_sequence)
|
232 |
|
233 |
-
|
234 |
-
if args.prompt:
|
235 |
-
break
|
236 |
|
237 |
-
|
|
|
|
|
238 |
|
239 |
-
|
240 |
-
|
241 |
|
242 |
gr.Interface(
|
243 |
-
|
244 |
-
gr.inputs.Textbox(lines=1, label="Input text"
|
245 |
gr.outputs.Textbox(lines=20, label="Output text"),
|
|
|
246 |
title=title,
|
247 |
description=description,
|
248 |
).launch(enable_queue=True,cache_examples=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
import torch
|
|
|
3 |
import gradio as gr
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
def set_seed(args):
|
6 |
rd = np.random.randint(100000)
|
7 |
print('seed =', rd)
|
|
|
10 |
if args.n_gpu > 0:
|
11 |
torch.cuda.manual_seed_all(rd)
|
12 |
|
13 |
+
title = "ruGPT3 Song Writer"
|
14 |
+
description = "Generate russian songs via fine-tuned ruGPT3"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
io = gr.Interface.load("models/bankholdup/rugpt3_song_writer")
|
|
|
|
|
17 |
|
18 |
+
examples = [
|
19 |
+
['Как дела? Как дела? Это новый кадиллак']
|
20 |
+
]
|
21 |
|
22 |
+
def inference(text):
|
23 |
+
return io(text)
|
24 |
|
25 |
gr.Interface(
|
26 |
+
inference,
|
27 |
+
[gr.inputs.Textbox(lines=1, label="Input text")],
|
28 |
gr.outputs.Textbox(lines=20, label="Output text"),
|
29 |
+
examples=examples,
|
30 |
title=title,
|
31 |
description=description,
|
32 |
).launch(enable_queue=True,cache_examples=True)
|