bankholdup's picture
Update app.py
f5b970b
raw
history blame
2.53 kB
import transformers
import numpy as np
import torch
import streamlit as st
from transformers import GPT2Tokenizer, GPT2LMHeadModel
@st.cache(allow_output_mutation=True)
def load_model():
# model_ckpt = "bankholdup/rugpt3_song_writer"
model_ckpt = "bankholdup/mgpt_song_writer"
tokenizer = GPT2Tokenizer.from_pretrained(model_ckpt)
model = GPT2LMHeadModel.from_pretrained(model_ckpt)
return tokenizer, model
def set_seed(rng=100000):
rd = np.random.randint(rng)
np.random.seed(rd)
torch.manual_seed(rd)
title = st.title("Загрузка модели")
tokenizer, model = load_model()
title.title("Генератор текстов русского рэпа на основе ruGPT3 ")
context = st.text_input("Введите начало песни", "Нету милфы сексапильней, чем Екатерина Шульман")
temperature= st.slider("temperature (чем выше, тем модель сильнее импровизирует; чем ниже, тем больше повторяется)", 0.0, 2.5, 0.95)
if st.button("Поехали", help="Может занять какое-то время"):
with st.spinner("Генерируем..."):
generated_sequences = []
set_seed()
prompt_text = f"{context}"
encoded_prompt = tokenizer.encode(prompt_text, add_special_tokens=False, return_tensors="pt")
output_sequences = model.generate(
input_ids=encoded_prompt,
max_length=200 + len(encoded_prompt[0]),
temperature=temperature,
top_k=50,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
num_return_sequences=1
)
if len(output_sequences.shape) > 2:
output_sequences.squeeze_()
for generated_sequence_idx, generated_sequence in enumerate(output_sequences):
generated_sequence = generated_sequence.tolist()
text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)
total_sequence = (
prompt_text + text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True)) :]
)
splits = total_sequence.splitlines()
for line in range(len(splits)-5):
if "[" in splits[line]:
st.write("\n")
continue
st.write(splits[line])