File size: 9,166 Bytes
8ff16c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os

import argparse
import logging

import numpy as np
import torch
import datetime
import gradio as gr

from transformers import (
    CTRLLMHeadModel,
    CTRLTokenizer,
    GPT2LMHeadModel,
    GPT2Tokenizer,
    OpenAIGPTLMHeadModel,
    OpenAIGPTTokenizer,
    TransfoXLLMHeadModel,
    TransfoXLTokenizer,
    XLMTokenizer,
    XLMWithLMHeadModel,
    XLNetLMHeadModel,
    XLNetTokenizer,
)


logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO,
)
logger = logging.getLogger(__name__)

MAX_LENGTH = int(10000)  # Hardcoded max length to avoid infinite loop

MODEL_CLASSES = {
    "gpt2": (GPT2LMHeadModel, GPT2Tokenizer),
    "ctrl": (CTRLLMHeadModel, CTRLTokenizer),
    "openai-gpt": (OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
    "xlnet": (XLNetLMHeadModel, XLNetTokenizer),
    "transfo-xl": (TransfoXLLMHeadModel, TransfoXLTokenizer),
    "xlm": (XLMWithLMHeadModel, XLMTokenizer),
}

def set_seed(args):
    rd = np.random.randint(100000)
    print('seed =', rd)
    np.random.seed(rd)
    torch.manual_seed(rd)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(rd)

#
# Functions to prepare models' input
#


def prepare_ctrl_input(args, _, tokenizer, prompt_text):
    if args.temperature > 0.7:
        logger.info("CTRL typically works better with lower temperatures (and lower top_k).")

    encoded_prompt = tokenizer.encode(prompt_text, add_special_tokens=False)
    if not any(encoded_prompt[0] == x for x in tokenizer.control_codes.values()):
        logger.info("WARNING! You are not starting your generation from a control code so you won't get good results")
    return prompt_text


def prepare_xlm_input(args, model, tokenizer, prompt_text):
    # kwargs = {"language": None, "mask_token_id": None}

    # Set the language
    use_lang_emb = hasattr(model.config, "use_lang_emb") and model.config.use_lang_emb
    if hasattr(model.config, "lang2id") and use_lang_emb:
        available_languages = model.config.lang2id.keys()
        if args.xlm_language in available_languages:
            language = args.xlm_language
        else:
            language = None
            while language not in available_languages:
                language = input("Using XLM. Select language in " + str(list(available_languages)) + " >>> ")

        model.config.lang_id = model.config.lang2id[language]
        # kwargs["language"] = tokenizer.lang2id[language]

    # TODO fix mask_token_id setup when configurations will be synchronized between models and tokenizers
    # XLM masked-language modeling (MLM) models need masked token
    # is_xlm_mlm = "mlm" in args.model_name_or_path
    # if is_xlm_mlm:
    #     kwargs["mask_token_id"] = tokenizer.mask_token_id

    return prompt_text


def prepare_xlnet_input(args, _, tokenizer, prompt_text):
    prompt_text = (args.padding_text if args.padding_text else PADDING_TEXT) + prompt_text
    return prompt_text


def prepare_transfoxl_input(args, _, tokenizer, prompt_text):
    prompt_text = (args.padding_text if args.padding_text else PADDING_TEXT) + prompt_text
    return prompt_text


PREPROCESSING_FUNCTIONS = {
    "ctrl": prepare_ctrl_input,
    "xlm": prepare_xlm_input,
    "xlnet": prepare_xlnet_input,
    "transfo-xl": prepare_transfoxl_input,
}


def adjust_length_to_model(length, max_sequence_length):
    if length < 0 and max_sequence_length > 0:
        length = max_sequence_length
    elif 0 < max_sequence_length < length:
        length = max_sequence_length  # No generation bigger than model size
    elif length < 0:
        length = MAX_LENGTH  # avoid infinite loop
    return length


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )

    parser.add_argument("--prompt", type=str, default="")
    parser.add_argument("--length", type=int, default=20)
    parser.add_argument("--stop_token", type=str, default="</s>", help="Token at which lyrics generation is stopped")

    parser.add_argument(
        "--temperature",
        type=float,
        default=1.0,
        help="temperature of 1.0 has no effect, lower tend toward greedy sampling",
    )
    parser.add_argument(
        "--repetition_penalty", type=float, default=1.0, help="primarily useful for CTRL model; in that case, use 1.2"
    )
    parser.add_argument("--k", type=int, default=0)
    parser.add_argument("--p", type=float, default=0.9)

    parser.add_argument("--padding_text", type=str, default="", help="Padding lyrics for Transfo-XL and XLNet.")
    parser.add_argument("--xlm_language", type=str, default="", help="Optional language when used with the XLM model.")

    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument("--num_return_sequences", type=int, default=1, help="The number of samples to generate.")
    args = parser.parse_args()

    args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
    args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()

    # Initialize the model and tokenizer
    try:
        args.model_type = args.model_type.lower()
        model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    except KeyError:
        raise KeyError("the model {} you specified is not supported. You are welcome to add it and open a PR :)")

    tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
    model = model_class.from_pretrained(args.model_name_or_path)
    model.to(args.device)

    args.length = adjust_length_to_model(args.length, max_sequence_length=model.config.max_position_embeddings)
    logger.info(args)
    generated_sequences = []
    prompt_text = ""
    while prompt_text != "stop":
        set_seed(args)
        while not len(prompt_text):
            prompt_text = args.prompt if args.prompt else input("Context >>> ")

        # Different models need different input formatting and/or extra arguments
        requires_preprocessing = args.model_type in PREPROCESSING_FUNCTIONS.keys()
        if requires_preprocessing:
            prepare_input = PREPROCESSING_FUNCTIONS.get(args.model_type)
            preprocessed_prompt_text = prepare_input(args, model, tokenizer, prompt_text)
            encoded_prompt = tokenizer.encode(
                preprocessed_prompt_text, add_special_tokens=False, return_tensors="pt", add_space_before_punct_symbol=True
            )
        else:
            encoded_prompt = tokenizer.encode(prompt_text, add_special_tokens=False, return_tensors="pt")
        encoded_prompt = encoded_prompt.to(args.device)

        output_sequences = model.generate(
            input_ids=encoded_prompt,
            max_length=args.length + len(encoded_prompt[0]),
            temperature=args.temperature,
            top_k=args.k,
            top_p=args.p,
            repetition_penalty=args.repetition_penalty,
            do_sample=True,
            num_return_sequences=args.num_return_sequences,
        )

        # Remove the batch dimension when returning multiple sequences
        if len(output_sequences.shape) > 2:
            output_sequences.squeeze_()

        now = datetime.datetime.now()
        date_time = now.strftime('%Y%m%d_%H%M%S%f')

        for generated_sequence_idx, generated_sequence in enumerate(output_sequences):
            print("ruGPT:".format(generated_sequence_idx + 1))
            generated_sequence = generated_sequence.tolist()

            # Decode lyrics
            text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)

            # Remove all lyrics after the stop token
            text = text[: text.find(args.stop_token) if args.stop_token else None]

            # Add the prompt at the beginning of the sequence. Remove the excess lyrics that was used for pre-processing
            total_sequence = (
                prompt_text + text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True)) :]
            )

            generated_sequences.append(total_sequence)
            # os.system('clear')
            print(total_sequence)

        prompt_text = ""
        if args.prompt:
            break

    return generated_sequences

title = "ruGPT3 Song Writer"
description = "Generate russian songs via fine-tuned ruGPT3"

gr.Interface(
    process, 
    gr.inputs.Textbox(lines=1, label="Input text", examples="Как дела? Как дела? Это новый кадиллак"),
    gr.outputs.Textbox(lines=20, label="Output text"),
    title=title,
    description=description,
    ).launch(enable_queue=True,cache_examples=True)