Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import google.generativeai as genai
|
| 3 |
+
import fitz # PyMuPDF for PDF text extraction
|
| 4 |
+
import spacy
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
| 6 |
+
from transformers import AutoModelForSeq2SeqLM
|
| 7 |
+
from docx import Document
|
| 8 |
+
import re
|
| 9 |
+
import dateparser
|
| 10 |
+
from datetime import datetime
|
| 11 |
+
import os
|
| 12 |
+
|
| 13 |
+
# Load SpaCy model
|
| 14 |
+
nlp_spacy = spacy.load('en_core_web_sm')
|
| 15 |
+
|
| 16 |
+
# Load Babelscape NER model
|
| 17 |
+
tokenizer_ner = AutoTokenizer.from_pretrained("Babelscape/wikineural-multilingual-ner")
|
| 18 |
+
model_ner = AutoModelForTokenClassification.from_pretrained("Babelscape/wikineural-multilingual-ner")
|
| 19 |
+
nlp_ner = pipeline('ner', model=model_ner, tokenizer=tokenizer_ner, aggregation_strategy="simple")
|
| 20 |
+
|
| 21 |
+
# Load GLinER model
|
| 22 |
+
gliner_tokenizer = AutoTokenizer.from_pretrained("DAMO-NLP-SG/gliner-large")
|
| 23 |
+
gliner_model = AutoModelForSeq2SeqLM.from_pretrained("DAMO-NLP-SG/gliner-large")
|
| 24 |
+
|
| 25 |
+
def extract_info_with_gliner(text, info_type):
|
| 26 |
+
input_text = f"Extract {info_type} from: {text}"
|
| 27 |
+
input_ids = gliner_tokenizer(input_text, return_tensors="pt").input_ids
|
| 28 |
+
outputs = gliner_model.generate(input_ids, max_length=100)
|
| 29 |
+
return gliner_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 30 |
+
|
| 31 |
+
class EnhancedNERPipeline:
|
| 32 |
+
def __init__(self, nlp_spacy, nlp_ner, gliner_model, gliner_tokenizer):
|
| 33 |
+
self.nlp_spacy = nlp_spacy
|
| 34 |
+
self.nlp_ner = nlp_ner
|
| 35 |
+
self.gliner_model = gliner_model
|
| 36 |
+
self.gliner_tokenizer = gliner_tokenizer
|
| 37 |
+
|
| 38 |
+
def __call__(self, text):
|
| 39 |
+
# SpaCy processing
|
| 40 |
+
doc = self.nlp_spacy(text)
|
| 41 |
+
|
| 42 |
+
# Babelscape NER processing
|
| 43 |
+
ner_results = self.nlp_ner(text)
|
| 44 |
+
|
| 45 |
+
# GLinER processing
|
| 46 |
+
gliner_companies = extract_info_with_gliner(text, "company names")
|
| 47 |
+
gliner_experience = extract_info_with_gliner(text, "years of experience")
|
| 48 |
+
gliner_education = extract_info_with_gliner(text, "educational institutions")
|
| 49 |
+
|
| 50 |
+
# Combine results
|
| 51 |
+
combined_entities = doc.ents + tuple(ner_results)
|
| 52 |
+
|
| 53 |
+
# Add GLinER results as custom attributes
|
| 54 |
+
doc._.gliner_companies = gliner_companies.split(', ')
|
| 55 |
+
doc._.gliner_experience = gliner_experience
|
| 56 |
+
doc._.gliner_education = gliner_education.split(', ')
|
| 57 |
+
|
| 58 |
+
# Update doc.ents with combined results for other entity types
|
| 59 |
+
doc.ents = [ent for ent in combined_entities if ent.label_ not in ["ORG"]]
|
| 60 |
+
|
| 61 |
+
return doc
|
| 62 |
+
|
| 63 |
+
# Create the enhanced pipeline
|
| 64 |
+
enhanced_nlp = EnhancedNERPipeline(nlp_spacy, nlp_ner, gliner_model, gliner_tokenizer)
|
| 65 |
+
|
| 66 |
+
def extract_companies(doc):
|
| 67 |
+
gliner_companies = set(doc._.gliner_companies)
|
| 68 |
+
spacy_babelscape_companies = set([ent.text for ent in doc.ents if ent.label_ == "ORG"])
|
| 69 |
+
return list(gliner_companies.union(spacy_babelscape_companies))
|
| 70 |
+
|
| 71 |
+
def extract_experience(doc):
|
| 72 |
+
gliner_experience = int(re.search(r'\d+', doc._.gliner_experience).group()) if doc._.gliner_experience else 0
|
| 73 |
+
spacy_experience = max([datetime.now().year - date.year for ent in doc.ents if ent.label_ == "DATE" and (date := dateparser.parse(ent.text)) and date.year <= datetime.now().year] or [0])
|
| 74 |
+
return max(gliner_experience, spacy_experience)
|
| 75 |
+
|
| 76 |
+
def extract_education(doc):
|
| 77 |
+
gliner_education = set(doc._.gliner_education)
|
| 78 |
+
spacy_babelscape_education = set([ent.text for ent in doc.ents if ent.label_ == "ORG" and any(keyword in ent.text.lower() for keyword in ["university", "college", "institute", "school"])])
|
| 79 |
+
return list(gliner_education.union(spacy_babelscape_education))
|
| 80 |
+
|
| 81 |
+
def extract_text_from_pdf(file):
|
| 82 |
+
pdf = fitz.open(stream=file.read(), filetype="pdf")
|
| 83 |
+
text = ""
|
| 84 |
+
for page in pdf:
|
| 85 |
+
text += page.get_text()
|
| 86 |
+
return text
|
| 87 |
+
|
| 88 |
+
def extract_text_from_doc(file):
|
| 89 |
+
doc = Document(file)
|
| 90 |
+
return " ".join([paragraph.text for paragraph in doc.paragraphs])
|
| 91 |
+
|
| 92 |
+
def authenticate_gemini(api_key):
|
| 93 |
+
try:
|
| 94 |
+
genai.configure(api_key=api_key)
|
| 95 |
+
model = genai.GenerativeModel('gemini-pro')
|
| 96 |
+
return model
|
| 97 |
+
except Exception as e:
|
| 98 |
+
st.error(f"Authentication failed: {e}")
|
| 99 |
+
return None
|
| 100 |
+
|
| 101 |
+
def generate_summary(text, model):
|
| 102 |
+
prompt = f"Summarize the following resume:\n\n{text}\n\nProvide a brief overview of the candidate's qualifications, experience, and key skills."
|
| 103 |
+
response = model.generate_content(prompt)
|
| 104 |
+
return response.text
|
| 105 |
+
|
| 106 |
+
def main():
|
| 107 |
+
st.title("Enhanced Resume Analyzer with GLinER Focus")
|
| 108 |
+
|
| 109 |
+
api_key = st.text_input("Enter your Google Gemini API key", type="password")
|
| 110 |
+
uploaded_file = st.file_uploader("Choose a PDF or DOCX file", type=["pdf", "docx"])
|
| 111 |
+
|
| 112 |
+
if uploaded_file is not None and api_key:
|
| 113 |
+
try:
|
| 114 |
+
model = authenticate_gemini(api_key)
|
| 115 |
+
if model is None:
|
| 116 |
+
return
|
| 117 |
+
|
| 118 |
+
if uploaded_file.type == "application/pdf":
|
| 119 |
+
resume_text = extract_text_from_pdf(uploaded_file)
|
| 120 |
+
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
|
| 121 |
+
resume_text = extract_text_from_doc(uploaded_file)
|
| 122 |
+
else:
|
| 123 |
+
st.error("Unsupported file format.")
|
| 124 |
+
return
|
| 125 |
+
|
| 126 |
+
# Process the resume text with the enhanced pipeline
|
| 127 |
+
doc = enhanced_nlp(resume_text)
|
| 128 |
+
|
| 129 |
+
companies = extract_companies(doc)
|
| 130 |
+
experience = extract_experience(doc)
|
| 131 |
+
education = extract_education(doc)
|
| 132 |
+
|
| 133 |
+
# Use GLinER for other extractions
|
| 134 |
+
phone = extract_info_with_gliner(resume_text, "phone number")
|
| 135 |
+
email = extract_info_with_gliner(resume_text, "email address")
|
| 136 |
+
linkedin = extract_info_with_gliner(resume_text, "LinkedIn profile")
|
| 137 |
+
|
| 138 |
+
st.subheader("Extracted Information")
|
| 139 |
+
st.write(f"**Years of Experience:** {experience}")
|
| 140 |
+
st.write("**Companies:**", ", ".join(companies))
|
| 141 |
+
st.write("**Education:**", ", ".join(education))
|
| 142 |
+
st.write(f"**Phone Number:** {phone}")
|
| 143 |
+
st.write(f"**Email:** {email}")
|
| 144 |
+
st.write(f"**LinkedIn:** {linkedin}")
|
| 145 |
+
|
| 146 |
+
summary = generate_summary(resume_text, model)
|
| 147 |
+
st.subheader("Resume Summary")
|
| 148 |
+
st.write(summary)
|
| 149 |
+
|
| 150 |
+
except Exception as e:
|
| 151 |
+
st.error(f"Error during processing: {e}")
|
| 152 |
+
|
| 153 |
+
if __name__ == "__main__":
|
| 154 |
+
main()
|