Spaces:
Running
Running
| import json | |
| import os | |
| import shutil | |
| import requests | |
| import gradio as gr | |
| from huggingface_hub import Repository, InferenceClient | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| API_URL = "https://api-inference.huggingface.co/models/tiiuae/falcon-180B-chat" | |
| BOT_NAME = "Falcon" | |
| STOP_SEQUENCES = ["\nUser:", "<|endoftext|>", " User:", "###"] | |
| EXAMPLES = [ | |
| ["Hey Falcon! Any recommendations for my holidays in Abu Dhabi?"], | |
| ["What's the Everett interpretation of quantum mechanics?"], | |
| ["Give me a list of the top 10 dive sites you would recommend around the world."], | |
| ["Can you tell me more about deep-water soloing?"], | |
| ["Can you write a short tweet about the release of our latest AI model, Falcon LLM?"] | |
| ] | |
| client = InferenceClient( | |
| API_URL, | |
| headers={"Authorization": f"Bearer {HF_TOKEN}"}, | |
| ) | |
| def format_prompt(message, history, system_prompt): | |
| prompt = "" | |
| if system_prompt: | |
| prompt += f"System: {system_prompt}\n" | |
| for user_prompt, bot_response in history: | |
| prompt += f"User: {user_prompt}\n" | |
| prompt += f"Falcon: {bot_response}\n" # Response already contains "Falcon: " | |
| prompt += f"""User: {message} | |
| Falcon:""" | |
| return prompt | |
| def generate( | |
| prompt, history, system_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, | |
| ): | |
| temperature = float(temperature) | |
| if temperature < 1e-2: | |
| temperature = 1e-2 | |
| top_p = float(top_p) | |
| generate_kwargs = dict( | |
| temperature=temperature, | |
| max_new_tokens=max_new_tokens, | |
| top_p=top_p, | |
| repetition_penalty=repetition_penalty, | |
| stop_sequences=STOP_SEQUENCES, | |
| do_sample=True, | |
| seed=42, | |
| ) | |
| formatted_prompt = format_prompt(prompt, history, system_prompt) | |
| stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
| output = "" | |
| for response in stream: | |
| output += response.token.text | |
| for stop_str in STOP_SEQUENCES: | |
| if output.endswith(stop_str): | |
| output = output[:-len(stop_str)] | |
| output = output.rstrip() | |
| yield output | |
| yield output | |
| return output | |
| additional_inputs=[ | |
| gr.Textbox("", label="Optional system prompt"), | |
| gr.Slider( | |
| label="Temperature", | |
| value=0.9, | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.05, | |
| interactive=True, | |
| info="Higher values produce more diverse outputs", | |
| ), | |
| gr.Slider( | |
| label="Max new tokens", | |
| value=256, | |
| minimum=0, | |
| maximum=8192, | |
| step=64, | |
| interactive=True, | |
| info="The maximum numbers of new tokens", | |
| ), | |
| gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| value=0.90, | |
| minimum=0.0, | |
| maximum=1, | |
| step=0.05, | |
| interactive=True, | |
| info="Higher values sample more low-probability tokens", | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| value=1.2, | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| interactive=True, | |
| info="Penalize repeated tokens", | |
| ) | |
| ] | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| with gr.Column(scale=0.4): | |
| gr.Image("better_banner.jpeg", elem_id="banner-image", show_label=False) | |
| with gr.Column(): | |
| gr.Markdown( | |
| """# Falcon-180B-Chat | |
| **Chat with [Falcon-180B-Chat](https://huggingface.co/tiiuae/falcon-180b-chat), brainstorm ideas, discuss your holiday plans, and more!** | |
| ✨ This demo is powered by [Falcon-180B](https://huggingface.co/tiiuae/falcon-180B) and finetuned on a mixture of [Ultrachat](https://huggingface.co/datasets/stingning/ultrachat), [Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) and [Airoboros](https://huggingface.co/datasets/jondurbin/airoboros-2.1). [Falcon-180B](https://huggingface.co/tiiuae/falcon-180b) is a state-of-the-art large language model built by the [Technology Innovation Institute](https://www.tii.ae) in Abu Dhabi. It is trained on 3.5 trillion tokens (including [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)) and available under the Apache 2.0 license. It currently holds the 🥇 1st place on the [🤗 Open LLM leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for a pretrained model. | |
| 🧪 This is only a **first experimental preview**: we intend to provide increasingly capable versions of Falcon Chat in the future, based on improved datasets and RLHF/RLAIF. | |
| 👀 **Learn more about Falcon LLM:** [falconllm.tii.ae](https://falconllm.tii.ae/) | |
| ➡️️ **Intended Use**: this demo is intended to showcase an early finetuning of [Falcon-180B](https://huggingface.co/tiiuae/falcon-180b), to illustrate the impact (and limitations) of finetuning on a dataset of conversations and instructions. We encourage the community to further build upon the base model, and to create even better instruct/chat versions! | |
| ⚠️ **Limitations**: the model can and will produce factually incorrect information, hallucinating facts and actions. As it has not undergone any advanced tuning/alignment, it can produce problematic outputs, especially if prompted to do so. Finally, this demo is limited to a session length of about 1,000 words. | |
| """ | |
| ) | |
| gr.ChatInterface( | |
| generate, | |
| examples=EXAMPLES, | |
| additional_inputs=additional_inputs, | |
| ) | |
| demo.queue(concurrency_count=16).launch(debug=True) | |